Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Related tags

Deep LearningResNet
Overview

Reproduce ResNet-v2 using MXNet

Requirements

  • Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5
  • Please fix the randomness if you want to train your own model and using this pull request

Trained models

The trained ResNet models achieve better error rates than the original ResNet-v1 models.

ImageNet 1K

Imagenet 1000 class dataset with 1.2 million images.

single center crop (224x224) validation error rate(%)

Network Top-1 error Top-5 error Traind Model
ResNet-18 30.48 10.92 data.dmlc.ml
ResNet-34 27.20 8.86 data.dmlc.ml
ResNet-50 24.39 7.24 data.dmlc.ml
ResNet-101 22.68 6.58 data.dmlc.ml
ResNet-152 22.25 6.42 data.dmlc.ml
ResNet-200 22.14 6.16 data.dmlc.ml

ImageNet 11K:

Full imagenet dataset: fall11_whole.tar from http://www.image-net.org/download-images.

We removed classes with less than 500 images. The filtered dataset contains 11221 classes and 12.4 millions images. We randomly pick 50 images from each class as the validation set. The split is available at http://data.dmlc.ml/mxnet/models/imagenet-11k/

Network Top-1 error Top-5 error Traind Model
ResNet-200 58.4 28.8

cifar10: single crop validation error rate(%):

Network top-1
ResNet-164 4.68

Training Curve

The following curve is ResNet-v2 trainined on imagenet-1k, all the training detail you can found here, which include gpu information, lr schedular, batch-size etc, and you can also see the training speed with the corresponding logs.

you can get the curve by run:
cd log && python plot_curve.py --logs=resnet-18.log,resnet-34.log,resnet-50.log,resnet-101.log,resnet-152.log,resnet-200.log

How to Train

imagenet

first you should prepare the train.lst and val.lst, you can generate this list files by yourself(please ref.make-the-image-list, and do not forget to shuffle the list files!), or just download the provided version from here.

then you can create the *.rec file, i recommend use this cmd parameters:

$im2rec_path train.lst train/ data/imagenet/train_480_q90.rec resize=480 quality=90

set resize=480 and quality=90(quality=100 will be best i think:)) here may use more disk memory(about ~103G), but this is very useful with scale augmentation during training[1][2], and can help reproducing a good result.

because you are training imagenet , so we should set data-type = imagenet, then the training cmd is like this(here i use 6 gpus for training):

python -u train_resnet.py --data-dir data/imagenet \
--data-type imagenet --depth 50 --batch-size 256  --gpus=0,1,2,3,4,5

change depth to different number to support different model, currently support ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, ResNet-200.

cifar10

same as above, first you should use im2rec to create the .rec file, then training with cmd like this:

python -u train_resnet.py --data-dir data/cifar10 --data-type cifar10 \
  --depth 164 --batch-size 128 --num-examples 50000 --gpus=0,1

change depth when training different model, only support(depth-2)%9==0, such as RestNet-110, ResNet-164, ResNet-1001...

retrain

When training large dataset(like imagenet), it's better for us to change learning rate manually, or the training is killed by some other reasons, so retrain is very important. the code here support retrain, suppose you want to retrain your resnet-50 model from epoch 70 and want to change lr=0.0005, wd=0.001, batch-size=256 using 8gpu, then you can try this cmd:

python -u train_resnet.py --data-dir data/imagenet --data-type imagenet --depth 50 --batch-size 256 \
--gpus=0,1,2,3,4,5,6,7 --model-load-epoch=70 --lr 0.0005 --wd 0.001 --retrain

Notes

  • it's better training the model in imagenet with epoch > 110, because this will lead better result.
  • when epoch is about 95, cancel the scale/color/aspect augmentation during training, this can be done by only comment out 6 lines of the code, like this:
train = mx.io.ImageRecordIter(
        # path_imgrec         = os.path.join(args.data_dir, "train_480_q90.rec"),
        path_imgrec         = os.path.join(args.data_dir, "train_256_q90.rec"),
        label_width         = 1,
        data_name           = 'data',
        label_name          = 'softmax_label',
        data_shape          = (3, 32, 32) if args.data_type=="cifar10" else (3, 224, 224),
        batch_size          = args.batch_size,
        pad                 = 4 if args.data_type == "cifar10" else 0,
        fill_value          = 127,  # only used when pad is valid
        rand_crop           = True,
        # max_random_scale    = 1.0 if args.data_type == "cifar10" else 1.0,  # 480
        # min_random_scale    = 1.0 if args.data_type == "cifar10" else 0.533,  # 256.0/480.0
        # max_aspect_ratio    = 0 if args.data_type == "cifar10" else 0.25,
        # random_h            = 0 if args.data_type == "cifar10" else 36,  # 0.4*90
        # random_s            = 0 if args.data_type == "cifar10" else 50,  # 0.4*127
        # random_l            = 0 if args.data_type == "cifar10" else 50,  # 0.4*127
        rand_mirror         = True,
        shuffle             = True,
        num_parts           = kv.num_workers,
        part_index          = kv.rank)

but you should prepare one train_256_q90.rec using im2rec like:

$im2rec_path train.lst train/ data/imagenet/train_256_q90.rec resize=256 quality=90

cancel this scale/color/aspect augmentation can be done easily by using --aug-level=1 in your cmd.

  • it's better for running longer than 30 epoch before first decrease the lr(such as 60), so you may decide the epoch number by observe the val-acc curve, and set lr with retrain.

Training ResNet-200 by only one gpu with 'dark knowledge' of mxnet

you can training ResNet-200 or even ResNet-1000 on imaget with only one gpu! for example, we can train ResNet-200 with batch-size=128 on one gpu(=12G), or if your gpu memory is less than 12G, you should decrease the batch-size by a little. here is the way of how to using 'dark knowledge' of mxnet:

when turn on memonger, the trainning speed will be about 25% slower, but we can training more depth network, have fun!

ResNet-v2 vs ResNet-v1

Does ResNet-v2 always achieve better result than ResNet-v1 on imagnet? The answer is NO, ResNet-v2 has no advantage or even has disadvantage than ResNet-v1 when depth<152, we can get the following result from paper[2].(why?)

ImageNet: single center crop validation error rate(%)

Network crop-size top-1 top-5
ResNet-101-v1 224x224 23.6 7.1
ResNet-101-v2 224x224 24.6 7.5
ResNet-152-v1 320x320 21.3 5.5
ResNet-152-v2 320x320 21.1 5.5

we can see that:

  • when depth=101, ResNet-v2 is 1% worse than ResNet-v1 on top-1 and 0.4% worse on top-5.
  • when depth=152, ResNet-v2 is only 0.2% better than ResNet-v1 on top-1 and owns the same performance on top-5 even when crop-size=320x320.

How to use Trained Models

we can use the pre-trained model to classify one input image, the step is easy:

  • download the pre-trained model form data.dml.ml and put it into the predict directory.
  • cd predict and run python -u predict.py --img test.jpg --prefix resnet-50 --gpu 0, this means you want to recgnition test.jpg using model resnet-50-0000.params and gpu 0, then it will output the classification result.

Reference

[1] Kaiming He, et al. "Deep Residual Learning for Image Recognition." arXiv arXiv:1512.03385 (2015).
[2] Kaiming He, et al. "Identity Mappings in Deep Residual Networks" arXiv:1603.05027 (2016).
[3] caffe official training code and model, https://github.com/KaimingHe/deep-residual-networks
[4] torch training code and model provided by facebook, https://github.com/facebook/fb.resnet.torch
[5] MXNet resnet-v1 cifar10 examples,https://github.com/dmlc/mxnet/blob/master/example/image-classification/train_cifar10_resnet.py

Owner
Wei Wu
Wei Wu
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022