Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Related tags

Deep LearningResNet
Overview

Reproduce ResNet-v2 using MXNet

Requirements

  • Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5
  • Please fix the randomness if you want to train your own model and using this pull request

Trained models

The trained ResNet models achieve better error rates than the original ResNet-v1 models.

ImageNet 1K

Imagenet 1000 class dataset with 1.2 million images.

single center crop (224x224) validation error rate(%)

Network Top-1 error Top-5 error Traind Model
ResNet-18 30.48 10.92 data.dmlc.ml
ResNet-34 27.20 8.86 data.dmlc.ml
ResNet-50 24.39 7.24 data.dmlc.ml
ResNet-101 22.68 6.58 data.dmlc.ml
ResNet-152 22.25 6.42 data.dmlc.ml
ResNet-200 22.14 6.16 data.dmlc.ml

ImageNet 11K:

Full imagenet dataset: fall11_whole.tar from http://www.image-net.org/download-images.

We removed classes with less than 500 images. The filtered dataset contains 11221 classes and 12.4 millions images. We randomly pick 50 images from each class as the validation set. The split is available at http://data.dmlc.ml/mxnet/models/imagenet-11k/

Network Top-1 error Top-5 error Traind Model
ResNet-200 58.4 28.8

cifar10: single crop validation error rate(%):

Network top-1
ResNet-164 4.68

Training Curve

The following curve is ResNet-v2 trainined on imagenet-1k, all the training detail you can found here, which include gpu information, lr schedular, batch-size etc, and you can also see the training speed with the corresponding logs.

you can get the curve by run:
cd log && python plot_curve.py --logs=resnet-18.log,resnet-34.log,resnet-50.log,resnet-101.log,resnet-152.log,resnet-200.log

How to Train

imagenet

first you should prepare the train.lst and val.lst, you can generate this list files by yourself(please ref.make-the-image-list, and do not forget to shuffle the list files!), or just download the provided version from here.

then you can create the *.rec file, i recommend use this cmd parameters:

$im2rec_path train.lst train/ data/imagenet/train_480_q90.rec resize=480 quality=90

set resize=480 and quality=90(quality=100 will be best i think:)) here may use more disk memory(about ~103G), but this is very useful with scale augmentation during training[1][2], and can help reproducing a good result.

because you are training imagenet , so we should set data-type = imagenet, then the training cmd is like this(here i use 6 gpus for training):

python -u train_resnet.py --data-dir data/imagenet \
--data-type imagenet --depth 50 --batch-size 256  --gpus=0,1,2,3,4,5

change depth to different number to support different model, currently support ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, ResNet-200.

cifar10

same as above, first you should use im2rec to create the .rec file, then training with cmd like this:

python -u train_resnet.py --data-dir data/cifar10 --data-type cifar10 \
  --depth 164 --batch-size 128 --num-examples 50000 --gpus=0,1

change depth when training different model, only support(depth-2)%9==0, such as RestNet-110, ResNet-164, ResNet-1001...

retrain

When training large dataset(like imagenet), it's better for us to change learning rate manually, or the training is killed by some other reasons, so retrain is very important. the code here support retrain, suppose you want to retrain your resnet-50 model from epoch 70 and want to change lr=0.0005, wd=0.001, batch-size=256 using 8gpu, then you can try this cmd:

python -u train_resnet.py --data-dir data/imagenet --data-type imagenet --depth 50 --batch-size 256 \
--gpus=0,1,2,3,4,5,6,7 --model-load-epoch=70 --lr 0.0005 --wd 0.001 --retrain

Notes

  • it's better training the model in imagenet with epoch > 110, because this will lead better result.
  • when epoch is about 95, cancel the scale/color/aspect augmentation during training, this can be done by only comment out 6 lines of the code, like this:
train = mx.io.ImageRecordIter(
        # path_imgrec         = os.path.join(args.data_dir, "train_480_q90.rec"),
        path_imgrec         = os.path.join(args.data_dir, "train_256_q90.rec"),
        label_width         = 1,
        data_name           = 'data',
        label_name          = 'softmax_label',
        data_shape          = (3, 32, 32) if args.data_type=="cifar10" else (3, 224, 224),
        batch_size          = args.batch_size,
        pad                 = 4 if args.data_type == "cifar10" else 0,
        fill_value          = 127,  # only used when pad is valid
        rand_crop           = True,
        # max_random_scale    = 1.0 if args.data_type == "cifar10" else 1.0,  # 480
        # min_random_scale    = 1.0 if args.data_type == "cifar10" else 0.533,  # 256.0/480.0
        # max_aspect_ratio    = 0 if args.data_type == "cifar10" else 0.25,
        # random_h            = 0 if args.data_type == "cifar10" else 36,  # 0.4*90
        # random_s            = 0 if args.data_type == "cifar10" else 50,  # 0.4*127
        # random_l            = 0 if args.data_type == "cifar10" else 50,  # 0.4*127
        rand_mirror         = True,
        shuffle             = True,
        num_parts           = kv.num_workers,
        part_index          = kv.rank)

but you should prepare one train_256_q90.rec using im2rec like:

$im2rec_path train.lst train/ data/imagenet/train_256_q90.rec resize=256 quality=90

cancel this scale/color/aspect augmentation can be done easily by using --aug-level=1 in your cmd.

  • it's better for running longer than 30 epoch before first decrease the lr(such as 60), so you may decide the epoch number by observe the val-acc curve, and set lr with retrain.

Training ResNet-200 by only one gpu with 'dark knowledge' of mxnet

you can training ResNet-200 or even ResNet-1000 on imaget with only one gpu! for example, we can train ResNet-200 with batch-size=128 on one gpu(=12G), or if your gpu memory is less than 12G, you should decrease the batch-size by a little. here is the way of how to using 'dark knowledge' of mxnet:

when turn on memonger, the trainning speed will be about 25% slower, but we can training more depth network, have fun!

ResNet-v2 vs ResNet-v1

Does ResNet-v2 always achieve better result than ResNet-v1 on imagnet? The answer is NO, ResNet-v2 has no advantage or even has disadvantage than ResNet-v1 when depth<152, we can get the following result from paper[2].(why?)

ImageNet: single center crop validation error rate(%)

Network crop-size top-1 top-5
ResNet-101-v1 224x224 23.6 7.1
ResNet-101-v2 224x224 24.6 7.5
ResNet-152-v1 320x320 21.3 5.5
ResNet-152-v2 320x320 21.1 5.5

we can see that:

  • when depth=101, ResNet-v2 is 1% worse than ResNet-v1 on top-1 and 0.4% worse on top-5.
  • when depth=152, ResNet-v2 is only 0.2% better than ResNet-v1 on top-1 and owns the same performance on top-5 even when crop-size=320x320.

How to use Trained Models

we can use the pre-trained model to classify one input image, the step is easy:

  • download the pre-trained model form data.dml.ml and put it into the predict directory.
  • cd predict and run python -u predict.py --img test.jpg --prefix resnet-50 --gpu 0, this means you want to recgnition test.jpg using model resnet-50-0000.params and gpu 0, then it will output the classification result.

Reference

[1] Kaiming He, et al. "Deep Residual Learning for Image Recognition." arXiv arXiv:1512.03385 (2015).
[2] Kaiming He, et al. "Identity Mappings in Deep Residual Networks" arXiv:1603.05027 (2016).
[3] caffe official training code and model, https://github.com/KaimingHe/deep-residual-networks
[4] torch training code and model provided by facebook, https://github.com/facebook/fb.resnet.torch
[5] MXNet resnet-v1 cifar10 examples,https://github.com/dmlc/mxnet/blob/master/example/image-classification/train_cifar10_resnet.py

Owner
Wei Wu
Wei Wu
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Pytorch Lightning 1.2k Jan 06, 2023
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022