Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Related tags

Deep Learningfishr
Overview

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization

Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization | paper

Alexandre Ramé, Corentin Dancette, Matthieu Cord

Abstract

Learning robust models that generalize well under changes in the data distribution is critical for real-world applications. To this end, there has been a growing surge of interest to learn simultaneously from multiple training domains - while enforcing different types of invariance across those domains. Yet, all existing approaches fail to show systematic benefits under fair evaluation protocols.

In this paper, we propose a new learning scheme to enforce domain invariance in the space of the gradients of the loss function: specifically, we introduce a regularization term that matches the domain-level variances of gradients across training domains. Critically, our strategy, named Fishr, exhibits close relations with the Fisher Information and the Hessian of the loss. We show that forcing domain-level gradient covariances to be similar during the learning procedure eventually aligns the domain-level loss landscapes locally around the final weights.

Extensive experiments demonstrate the effectiveness of Fishr for out-of-distribution generalization. In particular, Fishr improves the state of the art on the DomainBed benchmark and performs significantly better than Empirical Risk Minimization.

Installation

Requirements overview

Our implementation relies on the BackPACK package in PyTorch to easily compute gradient variances.

  • python == 3.7.10
  • torch == 1.8.1
  • torchvision == 0.9.1
  • backpack-for-pytorch == 1.3.0
  • numpy == 1.20.2

Procedure

  1. Clone the repo:
$ git clone https://github.com/alexrame/fishr.git
  1. Install this repository and the dependencies using pip:
$ conda create --name fishr python=3.7.10
$ conda activate fishr
$ cd fishr
$ pip install -r requirements.txt

With this, you can edit the Fishr code on the fly.

Overview

This github enables the replication of our two main experiments: (1) on Colored MNIST in the setup defined by IRM and (2) on the DomainBed benchmark.

Colored MNIST in the IRM setup

We first validate that Fishr tackles distribution shifts on the synthetic Colored MNIST.

Main results (Table 2 in Section 6.A)

To reproduce the results from Table 2, call python3 coloredmnist/train_coloredmnist.py --algorithm $algorithm where algorithm is either:

Results will be printed at the end of the script, averaged over 10 runs. Note that all hyperparameters are taken from the seminal IRM implementation.

    Method | Train acc. | Test acc.  | Gray test acc.
   --------|------------|------------|----------------
    ERM    | 86.4 ± 0.2 | 14.0 ± 0.7 |   71.0 ± 0.7
    IRM    | 71.0 ± 0.5 | 65.6 ± 1.8 |   66.1 ± 0.2
    V-REx  | 71.7 ± 1.5 | 67.2 ± 1.5 |   68.6 ± 2.2
    Fishr  | 71.0 ± 0.9 | 69.5 ± 1.0 |   70.2 ± 1.1

Without label flipping (Table 5 in Appendix C.2.3)

The script coloredmnist.train_coloredmnist also accepts as input the argument --label_flipping_prob which defines the label flipping probability. By default, it's 0.25, so to reproduce the results from Table 5 you should set --label_flipping_prob 0.

Fishr variants (Table 6 in Appendix C.2.4)

This table considers two additional Fishr variants, reproduced with algorithm set to:

  • fishr_offdiagonal for Fishr but without centering the gradient variances
  • fishr_notcentered for Fishr but on the full covariance rather than only the diagonal

DomainBed

DomainBed is a PyTorch suite containing benchmark datasets and algorithms for domain generalization, as introduced in In Search of Lost Domain Generalization. Instructions below are copied and adapted from the official github.

Algorithms and hyperparameter grids

We added Fishr as a new algorithm here, and defined Fishr's hyperparameter grids here, as defined in Table 7 in Appendix D.

Datasets

We ran Fishr on following datasets:

Launch training

Download the datasets:

python3 -m domainbed.scripts.download\
       --data_dir=/my/data/dir

Train a model for debugging:

python3 -m domainbed.scripts.train\
       --data_dir=/my/data/dir/\
       --algorithm Fishr\
       --dataset ColoredMNIST\
       --test_env 2

Launch a sweep for hyperparameter search:

python -m domainbed.scripts.sweep launch\
       --data_dir=/my/data/dir/\
       --output_dir=/my/sweep/output/path\
       --command_launcher MyLauncher
       --datasets ColoredMNIST\
       --algorithms Fishr

Here, MyLauncher is your cluster's command launcher, as implemented in command_launchers.py.

Performances inspection (Tables 3 and 4 in Section 6.B.2, Tables in Appendix G)

To view the results of your sweep:

python -m domainbed.scripts.collect_results\
       --input_dir=/my/sweep/output/path

We inspect performances using following model selection criteria, that differ in what data is used to choose the best hyper-parameters for a given model:

  • OracleSelectionMethod (Oracle): A random subset from the data of the test domain.
  • IIDAccuracySelectionMethod (Training): A random subset from the data of the training domains.

Critically, Fishr performs consistently better than Empirical Risk Minimization.

Model selection Algorithm Colored MNIST Rotated MNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
Oracle ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7
Oracle Fishr 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.2 70.8
Training ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
Training Fishr 52.0 ± 0.2 97.8 ± 0.0 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 67.1

Conclusion

We addressed the task of out-of-distribution generalization for computer vision classification tasks. We derive a new and simple regularization - Fishr - that matches the gradient variances across domains as a proxy for matching domain-level Hessians. Our scalable strategy reaches state-of-the-art performances on the DomainBed benchmark and performs better than ERM. Our empirical experiments suggest that Fishr regularization would consistently improve a deep classifier in real-world applications when dealing with data from multiple domains. If you need help to use Fishr, please open an issue or contact [email protected].

Citation

If you find this code useful for your research, please consider citing our work (under review):

@article{rame2021ishr,
    title={Fishr: Invariant Gradient Variances for Out-of-distribution Generalization},
    author={Alexandre Rame and Corentin Dancette and Matthieu Cord},
    year={2021},
    journal={arXiv preprint arXiv:2109.02934}
}
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022