Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

Overview

ETSformer - Pytorch

Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

Install

$ pip install etsformer-pytorch

Usage

import torch
from etsformer_pytorch import ETSFormer

model = ETSFormer(
    time_features = 4,
    model_dim = 512,                # in paper they use 512
    embed_kernel_size = 3,          # kernel size for 1d conv for input embedding
    layers = 2,                     # number of encoder and corresponding decoder layers
    heads = 8,                      # number of exponential smoothing attention heads
    K = 4,                          # num frequencies with highest amplitude to keep (attend to)
    dropout = 0.2                   # dropout (in paper they did 0.2)
)

timeseries = torch.randn(1, 1024, 4)

pred = model(timeseries, num_steps_forecast = 32) # (1, 32, 4) - (batch, num steps forecast, num time features)

For using ETSFormer for classification, using cross attention pooling on all latents and level output

import torch
from etsformer_pytorch import ETSFormer, ClassificationWrapper

etsformer = ETSFormer(
    time_features = 1,
    model_dim = 512,
    embed_kernel_size = 3,
    layers = 2,
    heads = 8,
    K = 4,
    dropout = 0.2
)

adapter = ClassificationWrapper(
    etsformer = etsformer,
    dim_head = 32,
    heads = 16,
    dropout = 0.2,
    level_kernel_size = 5,
    num_classes = 10
)

timeseries = torch.randn(1, 1024)

logits = adapter(timeseries) # (1, 10)

Citation

@misc{woo2022etsformer,
    title   = {ETSformer: Exponential Smoothing Transformers for Time-series Forecasting}, 
    author  = {Gerald Woo and Chenghao Liu and Doyen Sahoo and Akshat Kumar and Steven Hoi},
    year    = {2022},
    eprint  = {2202.01381},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • What are your thoughts on using latents for additional classification task

    What are your thoughts on using latents for additional classification task

    Hi! I was wondering if you have thought about aggregating seasonal and growth latents for additional tasks (for example classification)? What are the possible ways to bring latents into single feature vector in your opinion? The easiest one would be just get the mean along layers and time dimensions but that seams to be too naive. Another idea I had it to use Cross Attention mechanic with single time query key to aggregate latents:

    all_latents = torch.cat([latent_growths, latent_seasonals], dim=-1)
    all_latents = rearrange(all_latents, 'b n l d -> (b l) n d')
    # q = nn.Parameter(torch.randn(all_latents_dim))
    q = repeat(q, 'd -> b 1 d', b = all_latents.shape[0])
    agg_latent = cross_attention(query=q, context=all_latents)
    agg_latent = rearrange(all_latents, '(b l) n d -> b (l n) d')
    agg_latent = agg_latent.mean(dim=1) # may be we should have done it before cross attention?
    

    Would be great to hear your thoughts

    opened by inspirit 15
  • Pre LayerNorm might be required for k,v?

    Pre LayerNorm might be required for k,v?

    https://github.com/lucidrains/ETSformer-pytorch/blob/2561053007e919409b3255eb1d0852c68799d24f/etsformer_pytorch/etsformer_pytorch.py#L440

    In my early tests I see some instability in training results, I was wondering if it might be good idea to LayerNorm latents before constructing key and values?

    opened by inspirit 5
  • growth_term calculation error

    growth_term calculation error

    https://github.com/lucidrains/ETSformer-pytorch/blob/e1d8514b44d113ead523aa6307986833e68eecc5/etsformer_pytorch/etsformer_pytorch.py#L233-L235

    It looks like you are not using growth and growth_smoothing_weightsto calculate growth_term

    opened by inspirit 4
  • Backward gradient error

    Backward gradient error

    Hello,

    i was trying to run the provided class and see following error: Function ScatterBackward0 returned an invalid gradient at index 1 - got [64, 4, 128] but expected shape compatible with [64, 33, 128]

    model = ETSFormer(
                time_features = 9,
                model_dim = 128,
                embed_kernel_size = 3,
                layers = 2,
                heads = 4,
                K = 4,
                dropout = 0.2
            )
    

    input = torch.rand(64, 64, 9) x = model(input, num_steps_forecast = 16)

    opened by inspirit 3
  • Does ETS-Former allow adding features

    Does ETS-Former allow adding features

    @lucidrains Thanks for making the code of the model available!

    In your paper, you state that the model infers seasonal patterns itself, so that there is no need to add time features like week, month, etc.

    Still, to increase the applicability of your approach, does the current implementation allow to add any (time-invariant and time-varying) features, e.g., categorical or numeric?

    opened by StatMixedML 2
  • wrong order of arguments

    wrong order of arguments

    https://github.com/lucidrains/ETSformer-pytorch/blob/2e0d465576c15fc8d84c4673f93fdd71d45b799c/etsformer_pytorch/etsformer_pytorch.py#L327

    you pass latents on wrong order to Level module: according to forward method first should be growth and then seasonal

    opened by inspirit 1
  • Clarification regarding data pre-processing

    Clarification regarding data pre-processing

    Hello,

    I was trying to run the ETSformer for ETT dataset. The paper mentions that the dataset is split as 60/20/20 for train, validation and test. Could you give some insight as to how the dataset split is happening in the code.

    Thank you.

    opened by vageeshmaiya 2
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022