ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

Overview

ROCKET + MINIROCKET

ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels.

Data Mining and Knowledge Discovery / arXiv:1910.13051 (preprint)

Most methods for time series classification that attain state-of-the-art accuracy have high computational complexity, requiring significant training time even for smaller datasets, and are intractable for larger datasets. Additionally, many existing methods focus on a single type of feature such as shape or frequency. Building on the recent success of convolutional neural networks for time series classification, we show that simple linear classifiers using random convolutional kernels achieve state-of-the-art accuracy with a fraction of the computational expense of existing methods. Using this method, it is possible to train and test a classifier on all 85 ‘bake off’ datasets in the UCR archive in < 2 h, and it is possible to train a classifier on a large dataset of more than one million time series in approximately 1 h.

Please cite as:

@article{dempster_etal_2020,
  author = {Dempster, Angus and Petitjean, Fran\c{c}ois and Webb, Geoffrey I},
  title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
  year = {2020},
  journal = {Data Mining and Knowledge Discovery},
  doi = {https://doi.org/10.1007/s10618-020-00701-z}
}

sktime

An implementation of ROCKET (with basic multivariate capability) is available through sktime. See the examples.

MINIROCKET *NEW*

MINIROCKET is up to 75× faster than ROCKET on larger datasets.

Results

UCR Archive

Scalability

Code

rocket_functions.py

Requirements

  • Python;
  • Numba;
  • NumPy;
  • scikit-learn (or equivalent).

Example

from rocket_functions import generate_kernels, apply_kernels
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# generate random kernels
kernels = generate_kernels(X_training.shape[-1], 10_000)

# transform training set and train classifier
X_training_transform = apply_kernels(X_training, kernels)
classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

# transform test set and predict
X_test_transform = apply_kernels(X_test, kernels)
predictions = classifier.predict(X_test_transform)

Reproducing the Experiments

reproduce_experiments_ucr.py

Arguments:
-d --dataset_names : txt file of dataset names
-i --input_path    : parent directory for datasets
-o --output_path   : path for results
-n --num_runs      : number of runs (optional, default 10)
-k --num_kernels   : number of kernels (optional, default 10,000)

Examples:
> python reproduce_experiments_ucr.py -d bakeoff.txt -i ./Univariate_arff -o ./
> python reproduce_experiments_ucr.py -d additional.txt -i ./Univariate_arff -o ./ -n 1 -k 1000

reproduce_experiments_scalability.py

Arguments:
-tr --training_path : training dataset (csv)
-te --test_path     : test dataset (csv)
-o  --output_path   : path for results
-k  --num_kernels   : number of kernels

Examples:
> python reproduce_experiments_scalability.py -tr training.csv -te test.csv -o ./ -k 100
> python reproduce_experiments_scalability.py -tr training.csv -te test.csv -o ./ -k 1000

Acknowledgements

We thank Professor Eamonn Keogh and all the people who have contributed to the UCR time series classification archive. Figures in our paper showing the ranking of different classifiers and variants of ROCKET were produced using code from Ismail Fawaz et al. (2019).

🚀
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022