ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

Overview

ROCKET + MINIROCKET

ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels.

Data Mining and Knowledge Discovery / arXiv:1910.13051 (preprint)

Most methods for time series classification that attain state-of-the-art accuracy have high computational complexity, requiring significant training time even for smaller datasets, and are intractable for larger datasets. Additionally, many existing methods focus on a single type of feature such as shape or frequency. Building on the recent success of convolutional neural networks for time series classification, we show that simple linear classifiers using random convolutional kernels achieve state-of-the-art accuracy with a fraction of the computational expense of existing methods. Using this method, it is possible to train and test a classifier on all 85 ‘bake off’ datasets in the UCR archive in < 2 h, and it is possible to train a classifier on a large dataset of more than one million time series in approximately 1 h.

Please cite as:

@article{dempster_etal_2020,
  author = {Dempster, Angus and Petitjean, Fran\c{c}ois and Webb, Geoffrey I},
  title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
  year = {2020},
  journal = {Data Mining and Knowledge Discovery},
  doi = {https://doi.org/10.1007/s10618-020-00701-z}
}

sktime

An implementation of ROCKET (with basic multivariate capability) is available through sktime. See the examples.

MINIROCKET *NEW*

MINIROCKET is up to 75× faster than ROCKET on larger datasets.

Results

UCR Archive

Scalability

Code

rocket_functions.py

Requirements

  • Python;
  • Numba;
  • NumPy;
  • scikit-learn (or equivalent).

Example

from rocket_functions import generate_kernels, apply_kernels
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# generate random kernels
kernels = generate_kernels(X_training.shape[-1], 10_000)

# transform training set and train classifier
X_training_transform = apply_kernels(X_training, kernels)
classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

# transform test set and predict
X_test_transform = apply_kernels(X_test, kernels)
predictions = classifier.predict(X_test_transform)

Reproducing the Experiments

reproduce_experiments_ucr.py

Arguments:
-d --dataset_names : txt file of dataset names
-i --input_path    : parent directory for datasets
-o --output_path   : path for results
-n --num_runs      : number of runs (optional, default 10)
-k --num_kernels   : number of kernels (optional, default 10,000)

Examples:
> python reproduce_experiments_ucr.py -d bakeoff.txt -i ./Univariate_arff -o ./
> python reproduce_experiments_ucr.py -d additional.txt -i ./Univariate_arff -o ./ -n 1 -k 1000

reproduce_experiments_scalability.py

Arguments:
-tr --training_path : training dataset (csv)
-te --test_path     : test dataset (csv)
-o  --output_path   : path for results
-k  --num_kernels   : number of kernels

Examples:
> python reproduce_experiments_scalability.py -tr training.csv -te test.csv -o ./ -k 100
> python reproduce_experiments_scalability.py -tr training.csv -te test.csv -o ./ -k 1000

Acknowledgements

We thank Professor Eamonn Keogh and all the people who have contributed to the UCR time series classification archive. Figures in our paper showing the ranking of different classifiers and variants of ROCKET were produced using code from Ismail Fawaz et al. (2019).

🚀
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Woosung Choi 63 Nov 14, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
22 Oct 14, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021