10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Overview

Under refactoring

10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Google Smartphone Decimeter Challenge

Global Navigation Satellite System (GNSS) provides raw signals, which the GPS chipset uses to compute a position.
Current mobile phones only offer 3-5 meters of positioning accuracy. While useful in many cases,
it can create a “jumpy” experience. For many use cases the results are not fine nor stable enough to be reliable.

This competition, hosted by the Android GPS team, is being presented at the ION GNSS+ 2021 Conference.
They seek to advance research in smartphone GNSS positioning accuracy
and help people better navigate the world around them.

In this competition, you'll use data collected from the host team’s own Android phones
to compute location down to decimeter or even centimeter resolution, if possible.
You'll have access to precise ground truth, raw GPS measurements,
and assistance data from nearby GPS stations, in order to train and test your submissions.
  • Predictions with host baseline for highway area(upper figure) are really good, but for downtown area(lower figure) are noisy due to the effect of Multipath. input_highway input_downtown

Overview

  • Predicting the Noise, Noise = Ground Truth - Baseline, like denoising in computer vision
  • Using the speed latDeg(t + dt) - latDeg(t)/dt as input instead of the absolute position for preventing overfitting on the train dataset.
  • Making 2D image input with Short Time Fourier Transform, STFT, and then using ImageNet convolutional neural network

image-20210806172801198 best_vs_hosbaseline

STFT and Conv Network Part

  • Input: Using librosa, generating STFT for both latDeg&lngDeg speeds.
    • Each phone sequence are split into 256 seconds sequence then STFT with n_tft=256, hop_length=1 and win_length=16 , result in (256, 127, 2) feature for each degree. The following 2D images are generated from 1D sequence.

image-20210806174449510

  • Model: Regression and Segmentation
    • Regression: EfficientNet B3, predict latDeg&lngDeg noise,
    • Segmentation: Unet ++ with EfficientNet encoder(segmentation pyroch) , predict stft noise
      • segmentation prediction + input STFT -> inverse STFT -> prediction of latDeg&lngDeg speeds

      • this speed prediction was used for:

        1. Low speed mask; The points of low speed area are replaced with its median.
        2. Speed disagreement mask: If the speed from position prediction and this speed prediction differ a lot, remove such points and interpolate.
      • prediction example for the segmentation. segmentation segmentation2

LightGBM Part

  • Input: IMU data excluding magnetic filed feature
    • also excluding y acceleration and z gyro because of phone mounting condition
    • adding moving average as additional features, window_size=5, 15, 45
  • Predict latDeg&lngDeg noise

KNN at downtown Part

similar to Snap to Grid, but using both global and local feature. Local re-ranking comes from the host baseline of GLR2021

  • Use train ground truth as database
  • Global search: query(latDeg&lngDeg) -> find 10 candidates
  • Local re-ranking: query(latDeg&lngDeg speeds and its moving averages) -> find 3 candidates -> taking mean over candidates

Public Post Process Part

There are lots of nice and effective PPs in public notebooks. Thanks to the all authors. I used the following notebooks.

score

  • Check each idea with late submissions.
  • actually conv position pred part implemented near deadline, before that I used only the segmentation model for STFT image.
status Host baseline + Public PP conv position pred gbm speed mask knn global knn local Private Board Score
1 day before deadline 3.07323
10 hours before deadline 2.80185
my best submission 2.61693
late sub 5.423
late sub 3.61910
late sub 3.28516
late sub 3.19016
late sub 2.81074
late sub 2.66377

How to run

environment

  • Ubuntu 18.04
  • Python with Anaconda
  • NVIDIA GPUx1

Data Preparation

First, download the data, here, and then place it like below.

../input/
    └ google-smartphone-decimeter-challenge/

During run, temporary cached will be stored under ../data/ and outputs will be stored under ../working/ through hydra.

Code&Pacakage Installation

# clone project
git clone https://github.com/Fkaneko/kaggle_Google_Smartphone_Decimeter_Challenge

# install project
cd kaggle_Google_Smartphone_Decimeter_Challenge
conda create -n gsdc_conv python==3.8.0
yes | bash install.sh
# at my case I need an additional run of `yes | bash install.sh` for installation.

Training/Testing

3 different models

  • for conv training, python train.py at each branch. Please check the src/config/config.yaml for the training configuration.
  • for LightGBM position you need mv ./src/notebook/lightgbm_position_prediction.ipynb ./ and then starting juypter notebook.
model branch training test
conv stft segmentation main ./train.py ./test.py
conv position conv_position ./train.py ./test.py
LightGBM position main ./src/notebook/lightgbm_position_prediction.ipynb included training notebook

Testing

10th place solution trained weights

I've uploaded pretrained weights as kaggle dataset, here. So extract it on ./ and you can see ./model_weights. And then running python test.py yields submission.csv. This csv will score ~2.61 at kaggle private dataset, which equals to 10th place.

your trained weights

For conv stft segmentation please change paths at the config, src/config/test_weights/compe_sub_github.yaml, and then run followings.

# at main branch
python test.py  \
     conv_pred_path="your conv position prediction csv path"\
     gbm_pred_path="your lightgbm position prediction path"

Regarding, conv_pred_path and gbm_pred_path, you need to create each prediction csv with the table above before run this code. Or you can use mv prediction results on the same kaggle dataset as pretrained weights.

License

Code

Apache 2.0

Dataset

Please check the kaggle page -> https://www.kaggle.com/c/google-smartphone-decimeter-challenge/rules

pretrained weights

These trained weights were generated from ImageNet pretrained weights. So please check ImageNet license if you use pretrained weights for a serious case.

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022