Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Overview

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes

Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Kai-En Lin1, Lei Xiao2, Feng Liu2, Guowei Yang1, Ravi Ramamoorthi1

1University of California, San Diego, 2Facebook Reality Labs

Project Page | Paper | Supplementary Materials | Pretrained models | Dataset | Preprocessing script

Requirements

Install required packages

Make sure you have up-to-date NVIDIA drivers supporting CUDA 11.1 (10.2 could work but need to change cudatoolkit package accordingly)

Run

conda env create -f environment.yml
conda activate video_viewsynth

Usage

Rendering

  1. Download our pretrained checkpoint and testing data. Extract the content to [path_to_data_directory]. It contains frames and background folders, as well as poses_bounds.npy.

  2. In configs, setup data path by changing render_video.txt

    root_dir should point to the frames folder mentioned in 1. and bg_dir should point to background folder.

    out_dir can be your desired output folder.

    ckpt_path should be the pretrained checkpoint path.

  3. Run python render_llff_video.py --config [config_file_path]

    e.g. python render_llff_video.py --config ../configs/render_video.txt

  • (Optional) For your own data, please run prepare_data.sh

    sh render.sh [frame_folder] [starting_frame] [ending_frame] [output_folder_name]

    Make sure your data is in this structure before running

    [frame_folder] --- cam00 --- 00000.jpg
                    |         |- 00001.jpg
                    |         ...
                    |- cam01
                    |- cam02
                    ...
                    |- poses_bounds.npy
    

    e.g. sh render.sh ~/deep_3d_data/frames 0 20 qual

Training

Train MPI

  1. Download RealEstate10K dataset and extract the frames. There are scripts in preprocessing folder which can be used to generate the data.

    The order should be download_data.py -> extract_frames.py -> compress_data.py.

    Remember to change the path in compress_data.py.

  2. Change the paths in config file train_realestate10k.txt

  3. Run

    cd train_mpi
    python train.py --config ../configs/train_realestate10k.txt
    

Train Mask

Once MPI is trained, we can use the checkpoint to train 3D mask network.

  1. Download dataset

  2. Change the paths in config file train_mask.txt

  3. Run

    cd train_mask
    python train.py --config ../configs/train_mask.txt
    

Citation

@inproceedings {lin2021deep,
    title = {Deep 3D Mask Volume for View Synthesis of Dynamic Scenes},
    author = {Kai-En Lin and Lei Xiao and Feng Liu and Guowei Yang and Ravi Ramamoorthi},
    booktitle = {ICCV},
    year = {2021},
}
Owner
Ken Lin
Ken Lin
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022