EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

Related tags

Deep Learningeasy
Overview

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

This repository is the official implementation of EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY proposes a simple methodology, that reaches or even beats state of the art performance on multiple standardized benchmarks of the field, while adding almost no hyperparameters or parameters to those used for training the initial deep learning models on the generic dataset.

Downloads

Please click the Google Drive link for downloading the features, backbones and datasets.

Each of the files (backbones and features) have the following prefixes depending on the backbone:

Backbone prefix Number of parameters
ResNet12 12M
ResNet12(1/sqrt(2)) small 6M
ResNet12(1/2) tiny 3M

Each of the features file is named as follow :

  • if not AS : " features .pt11"
  • if AS : " featuresAS .pt11"

Testing scripts for EASY

Run scripts to evaluate the features on FSL tasks for Y and ASY. For EY and EASY use the corresponding features.

Inductive setup using NCM

Test features on miniimagenet using Y (Resnet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeatures1.pt11' --preprocessing ME">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeatures1.pt11' --preprocessing ME

      
     

Test features on miniimagenet using ASY (Resnet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeaturesAS1.pt11' --preprocessing ME">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeaturesAS1.pt11' --preprocessing ME

      
     

Test features on miniimagenet using EY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeatures1.pt11, /minifeatures2.pt11, /minifeatures3.pt11]" --preprocessing ME">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeatures1.pt11, 
         
          /minifeatures2.pt11, 
          
           /minifeatures3.pt11]" --preprocessing ME

          
         
        
       

Test features on miniimagenet using EASY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeaturesAS1.pt11, /minifeaturesAS2.pt11, /minifeaturesAS3.pt11]" --preprocessing ME ">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeaturesAS1.pt11, 
         
          /minifeaturesAS2.pt11, 
          
           /minifeaturesAS3.pt11]" --preprocessing ME 

          
         
        
       

Transductive setup using Soft k-means

Test features on miniimagenet using Y (ResNet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeatures1.pt11'--postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeatures1.pt11'--postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

      
     

Test features on miniimagenet using ASY (ResNet12)

" --dataset miniimagenet --model resnet12 --test-features ' /minifeaturesAS1.pt11' --postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
     
      " --dataset miniimagenet --model resnet12 --test-features '
      
       /minifeaturesAS1.pt11' --postprocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

      
     

Test features on miniimagenet using EY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeatures1.pt11, /minifeatures2.pt11, /minifeatures3.pt11]" --postrocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeatures1.pt11, 
         
          /minifeatures2.pt11, 
          
           /minifeatures3.pt11]" --postrocessing ME  --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

          
         
        
       

Test features on miniimagenet using EASY (3xResNet12)

" --dataset miniimagenet --model resnet12 --test-features "[ /minifeaturesAS1.pt11, /minifeaturesAS2.pt11, /minifeaturesAS3.pt11]" --postrocessing ME --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20">
$ python main.py --dataset-path "
       
        " --dataset miniimagenet --model resnet12 --test-features "[
        
         /minifeaturesAS1.pt11, 
         
          /minifeaturesAS2.pt11, 
          
           /minifeaturesAS3.pt11]" --postrocessing ME  --transductive --transductive-softkmeans --transductive-temperature-softkmeans 20

          
         
        
       

Training scripts for Y

Train a model on miniimagenet using manifold mixup, self-supervision and cosine scheduler

" --dataset miniimagenet --model resnet12 --epochs 0 --manifold-mixup 500 --rotations --cosine --gamma 0.9 --milestones 100 --batch-size 128 --preprocessing ME ">
$ python main.py --dataset-path "
    
     " --dataset miniimagenet --model resnet12 --epochs 0 --manifold-mixup 500 --rotations --cosine --gamma 0.9 --milestones 100 --batch-size 128 --preprocessing ME 

    

Important Arguments

Some important arguments for our code.

Training arguments

  • dataset: choices=['miniimagenet', 'cubfs','tieredimagenet', 'fc100', 'cifarfs']
  • model: choices=['resnet12', 'resnet18', 'resnet20', 'wideresnet', 's2m2r']
  • dataset-path: path of the datasets folder which contains folders of all the datasets.

Few-shot Classification

  • preprocessing: preprocessing sequence for few shot given as a string, can contain R:relu P:sqrt E:sphering and M:centering using the base data.
  • postprocessing: postprocessing sequence for few shot given as a string, can contain R:relu P:sqrt E:sphering and M:centering on the few-shot data, used for transductive setting.

Few-shot classification Results

Experimental results on few-shot learning datasets with ResNet-12 backbone. We report our average results with 10000 randomly sampled episodes for both 1-shot and 5-shot evaluations.

MiniImageNet Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SimpleShot [29] 62.85 ± 0.20 80.02 ± 0.14
Baseline++ [30] 53.97 ± 0.79 75.90 ± 0.61
TADAM [35] 58.50 ± 0.30 76.70 ± 0.30
ProtoNet [10] 60.37 ± 0.83 78.02 ± 0.57
R2-D2 (+ens) [20] 64.79 ± 0.45 81.08 ± 0.32
FEAT [36] 66.78 82.05
CNL [37] 67.96 ± 0.98 83.36 ± 0.51
MERL [38] 67.40 ± 0.43 83.40 ± 0.28
Deep EMD v2 [13] 68.77 ± 0.29 84.13 ± 0.53
PAL [8] 69.37 ± 0.64 84.40 ± 0.44
inv-equ [39] 67.28 ± 0.80 84.78 ± 0.50
CSEI [40] 68.94 ± 0.28 85.07 ± 0.50
COSOC [9] 69.28 ± 0.49 85.16 ± 0.42
EASY 2×ResNet12 1/√2 (ours) 70.63 ± 0.20 86.28 ± 0.12
above <=12M nb of parameters below 36M
3S2M2R [12] 64.93 ± 0.18 83.18 ± 0.11
LR + DC [17] 68.55 ± 0.55 82.88 ± 0.42
EASY 3×ResNet12 (ours) 71.75 ± 0.19 87.15 ± 0.12

TieredImageNet Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SimpleShot [29] 69.09 ± 0.22 84.58 ± 0.16
ProtoNet [10] 65.65 ± 0.92 83.40 ± 0.65
FEAT [36] 70.80 ± 0.23 84.79 ± 0.16
PAL [8] 72.25 ± 0.72 86.95 ± 0.47
DeepEMD v2 [13] 74.29 ± 0.32 86.98 ± 0.60
MERL [38] 72.14 ± 0.51 87.01 ± 0.35
COSOC [9] 73.57 ± 0.43 87.57 ± 0.10
CNL [37] 73.42 ± 0.95 87.72 ± 0.75
invariance-equivariance [39] 72.21 ± 0.90 87.08 ± 0.58
CSEI [40] 73.76 ± 0.32 87.83 ± 0.59
ASY ResNet12 (ours) 74.31 ± 0.22 87.86 ± 0.15
above <=12M nb of parameters below 36M
S2M2R [12] 73.71 ± 0.22 88.52 ± 0.14
EASY 3×ResNet12 (ours) 74.71 ± 0.22 88.33 ± 0.14

CUBFS Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
FEAT [36] 68.87 ± 0.22 82.90 ± 0.10
LaplacianShot [41] 80.96 88.68
ProtoNet [10] 66.09 ± 0.92 82.50 ± 0.58
DeepEMD v2 [13] 79.27 ± 0.29 89.80 ± 0.51
EASY 4×ResNet12 1/sqrt(2) 77.97 ± 0.20 91.59 ± 0.10
above <=12M nb of parameters below 36M
S2M2R [12] 80.68 ± 0.81 90.85 ± 0.44
EASY 3×ResNet12 (ours) 78.56 ± 0.19 91.93 ± 0.10

CIFAR-FS Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
S2M2R [12] 63.66 ± 0.17 76.07 ± 0.19
R2-D2 (+ens) [20] 76.51 ± 0.47 87.63 ± 0.34
invariance-equivariance [39] 77.87 ± 0.85 89.74 ± 0.57
EASY 2×ResNet12 1/sqrt(2) (ours) 75.24 ± 0.20 88.38 ± 0.14
above <=12M nb of parameters below 36M
S2M2R [12] 74.81 ± 0.19 87.47 ± 0.13
EASY 3×ResNet12 (ours) 76.20 ± 0.20 89.00 ± 0.14

FC-100 Dataset (inductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
DeepEMD v2 [13] 46.60 ± 0.26 63.22 ± 0.71
TADAM [35] 40.10 ± 0.40 56.10 ± 0.40
ProtoNet [10] 41.54 ± 0.76 57.08 ± 0.76
invariance-equivariance [39] 47.76 ± 0.77 65.30 ± 0.76
R2-D2 (+ens) [20] 44.75 ± 0.43 59.94 ± 0.41
EASY 2×ResNet12 1/sqrt(2) (ours) 47.94 ± 0.19 64.14 ± 0.19
above <=12M nb of parameters below 36M
EASY 3×ResNet12 (ours) 48.07 ± 0.19 64.74 ± 0.19

Minimagenet (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
TIM-GD [42] 73.90 85.00
ODC [43] 77.20 ± 0.36 87.11 ± 0.42
PEMnE-BMS∗ [32] 80.56 ± 0.27 87.98 ± 0.14
SSR [44] 68.10 ± 0.60 76.90 ± 0.40
iLPC [45] 69.79 ± 0.99 79.82 ± 0.55
EPNet [31] 66.50 ± 0.89 81.60 ± 0.60
DPGN [46] 67.77 ± 0.32 84.60 ± 0.43
ECKPN [47] 70.48 ± 0.38 85.42 ± 0.46
Rot+KD+POODLE [48] 77.56 85.81
EASY 2×ResNet12( 1√2) (ours) 81.70 ±0.25 88.29 ±0.13
above <=12M nb of parameters below 36M
SSR [44] 72.40 ± 0.60 80.20 ± 0.40
fine-tuning(train+val) [49] 68.11 ± 0.69 80.36 ± 0.50
SIB+E3BM [50] 71.40 81.20
LR+DC [17] 68.57 ± 0.55 82.88 ± 0.42
EPNet [31] 70.74 ± 0.85 84.34 ± 0.53
TIM-GD [42] 77.80 87.40
PT+MAP [51] 82.92 ± 0.26 88.82 ± 0.13
iLPC [45] 83.05 ± 0.79 88.82 ± 0.42
ODC [43] 80.64 ± 0.34 89.39 ± 0.39
PEMnE-BMS∗ [32] 83.35 ± 0.25 89.53 ± 0.13
EASY 3×ResNet12 (ours) 82.75 ±0.25 88.93 ±0.12

CUB-FS (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
TIM-GD [42] 82.20 90.80
ODC [43] 85.87 94.97
DPGN [46] 75.71 ± 0.47 91.48 ± 0.33
ECKPN [47] 77.43 ± 0.54 92.21 ± 0.41
iLPC [45] 89.00 ± 0.70 92.74 ± 0.35
Rot+KD+POODLE [48] 89.93 93.78
EASY 4×ResNet12( 1/2) (ours) 90.41 ± 0.19 93.58 ± 0.10
above <=12M nb of parameters below 36M
LR+DC [17] 79.56 ± 0.87 90.67 ± 0.35
PT+MAP [51] 91.55 ± 0.19 93.99 ± 0.10
iLPC [45] 91.03 ± 0.63 94.11 ± 0.30
EASY 3×ResNet12 (ours) 90.76 ± 0.19 93.90 ± 0.09

CIFAR-FS (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
SSR [44] 76.80 ± 0.60 83.70 ± 0.40
iLPC [45] 77.14 ± 0.95 85.23 ± 0.55
DPGN [46] 77.90 ± 0.50 90.02 ± 0.40
ECKPN [47] 79.20 ± 0.40 91.00 ± 0.50
EASY 2×ResNet12 (1/sqrt(2)) (ours) 86.40 ± 0.23 89.75 ± 0.15
above <=12M nb of parameters below 36M
SSR [44] 81.60 ± 0.60 86.00 ± 0.40
fine-tuning (train+val) [49] 78.36 ± 0.70 87.54 ± 0.49
iLPC [45] 86.51 ± 0.75 90.60 ± 0.48
PT+MAP [51] 87.69 ± 0.23 90.68 ± 0.15
EASY 3×ResNet12 (ours) 86.96 ± 0.22 90.30 ± 0.15

FC-100 (transductive)

Methods 1-Shot 5-Way 5-Shot 5-Way
EASY 2×ResNet12( 1√2)(ours) 54.68 ± 0.25 66.19 ± 0.20
above <=12M nb of parameters below 36M
SIB+E3BM [50] 46.00 57.10
fine-tuning (train) [49] 43.16 ± 0.59 57.57 ± 0.55
ODC [43] 47.18 ± 0.30 59.21 ± 0.56
fine-tuning (train+val) [49] 50.44 ± 0.68 65.74 ± 0.60
EASY 3×ResNet12 (ours) 55.11 ± 0.25 67.09 ± 0.20

Tiered Imagenet (transducive)

Methods 1-Shot 5-Way 5-Shot 5-Way
PT+MAP [51] 85.67 ± 0.26 90.45 ± 0.14
TIM-GD [42] 79.90 88.50
ODC [43] 83.73 ± 0.36 90.46 ± 0.46
SSR [44] 81.20 ± 0.60 85.70 ± 0.40
Rot+KD+POODLE [48] 79.67 86.96
DPGN [46] 72.45 ± 0.51 87.24 ± 0.39
EPNet [31] 76.53 ± 0.87 87.32 ± 0.64
ECKPN [47] 73.59 ± 0.45 88.13 ± 0.28
iLPC [45] 83.49 ± 0.88 89.48 ± 0.47
ASY ResNet12 (ours) 82.66 ± 0.27 88.60 ± 0.14
above <=12M nb of parameters below 36M
SIB+E3BM [50] 75.60 84.30
SSR [44] 79.50 ± 0.60 84.80 ± 0.40
fine-tuning (train+val) [49] 72.87 ± 0.71 86.15 ± 0.50
TIM-GD [42] 82.10 89.80
LR+DC [17] 78.19 ± 0.25 89.90 ± 0.41
EPNet [31] 78.50 ± 0.91 88.36 ± 0.57
ODC [43] 85.22 ± 0.34 91.35 ± 0.42
iLPC [45] 88.50 ± 0.75 92.46 ± 0.42
PEMnE-BMS∗ [32] 86.07 ± 0.25 91.09 ± 0.14
EASY 3×ResNet12 (ours) 84.48 ± 0.27 89.71 ± 0.14
Owner
Yassir BENDOU
Ph.D student working on Few-shot learning problems. I enjoy maths and coding.
Yassir BENDOU
2 Jul 19, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021