Convert ONNX model graph to Keras model format.

Overview

onnx2keras

ONNX to Keras deep neural network converter.

GitHub License Python Version Downloads PyPI

Requirements

TensorFlow 2.0

API

onnx_to_keras(onnx_model, input_names, input_shapes=None, name_policy=None, verbose=True, change_ordering=False) -> {Keras model}

onnx_model: ONNX model to convert

input_names: list with graph input names

input_shapes: override input shapes (experimental)

name_policy: ['renumerate', 'short', 'default'] override layer names (experimental)

verbose: detailed output

change_ordering: change ordering to HWC (experimental)

Getting started

ONNX model

import onnx
from onnx2keras import onnx_to_keras

# Load ONNX model
onnx_model = onnx.load('resnet18.onnx')

# Call the converter (input - is the main model input name, can be different for your model)
k_model = onnx_to_keras(onnx_model, ['input'])

Keras model will be stored to the k_model variable. So simple, isn't it?

PyTorch model

Using ONNX as intermediate format, you can convert PyTorch model as well.

import numpy as np
import torch
from torch.autograd import Variable
from pytorch2keras.converter import pytorch_to_keras
import torchvision.models as models

if __name__ == '__main__':
    input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
    input_var = Variable(torch.FloatTensor(input_np))
    model = models.resnet18()
    model.eval()
    k_model = \
        pytorch_to_keras(model, input_var, [(3, 224, 224,)], verbose=True, change_ordering=True)

    for i in range(3):
        input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
        input_var = Variable(torch.FloatTensor(input_np))
        output = model(input_var)
        pytorch_output = output.data.numpy()
        keras_output = k_model.predict(np.transpose(input_np, [0, 2, 3, 1]))
        error = np.max(pytorch_output - keras_output)
        print('error -- ', error)  # Around zero :)

Deplying model as frozen graph

You can try using the snippet below to convert your onnx / PyTorch model to frozen graph. It may be useful for deploy for Tensorflow.js / for Tensorflow for Android / for Tensorflow C-API.

import numpy as np
import torch
from pytorch2keras.converter import pytorch_to_keras
from torch.autograd import Variable
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2


# Create and load model
model = Model()
model.load_state_dict(torch.load('model-checkpoint.pth'))
model.eval()

# Make dummy variables (and checking if the model works)
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
output = model(input_var)

# Convert the model!
k_model = \
    pytorch_to_keras(model, input_var, (3, 224, 224), 
                     verbose=True, name_policy='short',
                     change_ordering=True)

# Save model to SavedModel format
tf.saved_model.save(k_model, "./models")

# Convert Keras model to ConcreteFunction
full_model = tf.function(lambda x: k_model(x))
full_model = full_model.get_concrete_function(
    tf.TensorSpec(k_model.inputs[0].shape, k_model.inputs[0].dtype))

# Get frozen ConcreteFunction
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()

print("-" * 50)
print("Frozen model layers: ")
for layer in [op.name for op in frozen_func.graph.get_operations()]:
    print(layer)

print("-" * 50)
print("Frozen model inputs: ")
print(frozen_func.inputs)
print("Frozen model outputs: ")
print(frozen_func.outputs)

# Save frozen graph from frozen ConcreteFunction to hard drive
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
                  logdir="./frozen_models",
                  name="frozen_graph.pb",
                  as_text=False)

License

This software is covered by MIT License.

Owner
Grigory Malivenko
Machine Learning Engineer
Grigory Malivenko
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022