Oscar and VinVL

Overview

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks

VinVL: Revisiting Visual Representations in Vision-Language Models

Updates

05/28/2020: Released finetuned models on downstream tasks, please check MODEL_ZOO.md.
05/15/2020: Released pretrained models, datasets, and code for downstream tasks finetuning.
01/13/2021: our new work VinVL proposed OSCAR+, an improved version of OSCAR, and provided a better object-attribute detection model to extract features for V+L tasks. The VinVL work achieved SOTA performance on all seven V+L tasks here. Please stay tuned for the model and code release.
03/08/2021: Oscar+ pretraining code released, please check the last section in VinVL_MODEL_ZOO.md. All image features and model checkpoints in VinVL are also released. Please check VinVL for details.
04/13/2021: Our Scene Graph Benchmark Repo has been released. Welcome to use the code there to extract image features with VinVL pretrained models.

Introduction

This repository contains source code necessary to reproduce the results presented in the paper Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. We propose a new cross-modal pre-training method Oscar (Object-Semantics Aligned Pre-training). It leverages object tags detected in images as anchor points to significantly ease the learning of image-text alignments. We pre-train Oscar on the public corpus of 6.5 million text-image pairs, and fine-tune it on downstream tasks, creating new state-of-the-arts on six well-established vision-language understanding and generation tasks. For more on this project, see the Microsoft Research Blog post.

Performance

Task t2i t2i i2t i2t IC IC IC IC NoCaps NoCaps VQA NLVR2 GQA
Metric [email protected] [email protected] [email protected] [email protected] [email protected] M C S C S test-std test-P test-std
SoTA_S 39.2 68.0 56.6 84.5 38.9 29.2 129.8 22.4 61.5 9.2 70.92 58.80 63.17
SoTA_B 54.0 80.8 70.0 91.1 40.5 29.7 137.6 22.8 86.58 12.38 73.67 79.30 -
SoTA_L 57.5 82.8 73.5 92.2 41.7 30.6 140.0 24.5 - - 74.93 81.47 -
----- --- --- --- --- --- --- --- --- --- --- --- --- ---
Oscar_B 54.0 80.8 70.0 91.1 40.5 29.7 137.6 22.8 78.8 11.7 73.44 78.36 61.62
Oscar_L 57.5 82.8 73.5 92.2 41.7 30.6 140.0 24.5 80.9 11.3 73.82 80.05 -
----- --- --- --- --- --- --- --- --- --- --- --- --- ---
VinVL_B 58.1 83.2 74.6 92.6 40.9 30.9 140.6 25.1 92.46 13.07 76.12 83.08 64.65
VinVL_L 58.8 83.5 75.4 92.9 41.0 31.1 140.9 25.2 - - 76.62 83.98 -
gain 1.3 0.7 1.9 0.6 -0.7 0.5 0.9 0.7 5.9 0.7 1.69 2.51 1.48

t2i: text-to-image retrieval; i2t: image-to-text retrieval; IC: image captioning on COCO.

Download

We released pre-trained models, datasets, VinVL image features, and Oscar+ pretraining corpus for downstream tasks. Please check VinVL_DOWNLOAD.md for details.

To download checkpoints for the Vanilla OSCAR, please check DOWNLOAD.md for details.

Installation

Check INSTALL.md for installation instructions.

Model Zoo

Check MODEL_ZOO.md for scripts to run oscar downstream finetuning.

Check VinVL_MODEL_ZOO.md for scripts to run oscar+ pretraining and downstream finetuning.

Citations

Please consider citing this paper if you use the code:

@article{li2020oscar,
  title={Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks},
  author={Li, Xiujun and Yin, Xi and Li, Chunyuan and Hu, Xiaowei and Zhang, Pengchuan and Zhang, Lei and Wang, Lijuan and Hu, Houdong and Dong, Li and Wei, Furu and Choi, Yejin and Gao, Jianfeng},
  journal={ECCV 2020},
  year={2020}
}

@article{zhang2021vinvl,
  title={VinVL: Making Visual Representations Matter in Vision-Language Models},
  author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng},
  journal={CVPR 2021},
  year={2021}
}

License

Oscar is released under the MIT license. See LICENSE for details.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023