Oscar and VinVL

Overview

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks

VinVL: Revisiting Visual Representations in Vision-Language Models

Updates

05/28/2020: Released finetuned models on downstream tasks, please check MODEL_ZOO.md.
05/15/2020: Released pretrained models, datasets, and code for downstream tasks finetuning.
01/13/2021: our new work VinVL proposed OSCAR+, an improved version of OSCAR, and provided a better object-attribute detection model to extract features for V+L tasks. The VinVL work achieved SOTA performance on all seven V+L tasks here. Please stay tuned for the model and code release.
03/08/2021: Oscar+ pretraining code released, please check the last section in VinVL_MODEL_ZOO.md. All image features and model checkpoints in VinVL are also released. Please check VinVL for details.
04/13/2021: Our Scene Graph Benchmark Repo has been released. Welcome to use the code there to extract image features with VinVL pretrained models.

Introduction

This repository contains source code necessary to reproduce the results presented in the paper Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. We propose a new cross-modal pre-training method Oscar (Object-Semantics Aligned Pre-training). It leverages object tags detected in images as anchor points to significantly ease the learning of image-text alignments. We pre-train Oscar on the public corpus of 6.5 million text-image pairs, and fine-tune it on downstream tasks, creating new state-of-the-arts on six well-established vision-language understanding and generation tasks. For more on this project, see the Microsoft Research Blog post.

Performance

Task t2i t2i i2t i2t IC IC IC IC NoCaps NoCaps VQA NLVR2 GQA
Metric [email protected] [email protected] [email protected] [email protected] [email protected] M C S C S test-std test-P test-std
SoTA_S 39.2 68.0 56.6 84.5 38.9 29.2 129.8 22.4 61.5 9.2 70.92 58.80 63.17
SoTA_B 54.0 80.8 70.0 91.1 40.5 29.7 137.6 22.8 86.58 12.38 73.67 79.30 -
SoTA_L 57.5 82.8 73.5 92.2 41.7 30.6 140.0 24.5 - - 74.93 81.47 -
----- --- --- --- --- --- --- --- --- --- --- --- --- ---
Oscar_B 54.0 80.8 70.0 91.1 40.5 29.7 137.6 22.8 78.8 11.7 73.44 78.36 61.62
Oscar_L 57.5 82.8 73.5 92.2 41.7 30.6 140.0 24.5 80.9 11.3 73.82 80.05 -
----- --- --- --- --- --- --- --- --- --- --- --- --- ---
VinVL_B 58.1 83.2 74.6 92.6 40.9 30.9 140.6 25.1 92.46 13.07 76.12 83.08 64.65
VinVL_L 58.8 83.5 75.4 92.9 41.0 31.1 140.9 25.2 - - 76.62 83.98 -
gain 1.3 0.7 1.9 0.6 -0.7 0.5 0.9 0.7 5.9 0.7 1.69 2.51 1.48

t2i: text-to-image retrieval; i2t: image-to-text retrieval; IC: image captioning on COCO.

Download

We released pre-trained models, datasets, VinVL image features, and Oscar+ pretraining corpus for downstream tasks. Please check VinVL_DOWNLOAD.md for details.

To download checkpoints for the Vanilla OSCAR, please check DOWNLOAD.md for details.

Installation

Check INSTALL.md for installation instructions.

Model Zoo

Check MODEL_ZOO.md for scripts to run oscar downstream finetuning.

Check VinVL_MODEL_ZOO.md for scripts to run oscar+ pretraining and downstream finetuning.

Citations

Please consider citing this paper if you use the code:

@article{li2020oscar,
  title={Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks},
  author={Li, Xiujun and Yin, Xi and Li, Chunyuan and Hu, Xiaowei and Zhang, Pengchuan and Zhang, Lei and Wang, Lijuan and Hu, Houdong and Dong, Li and Wei, Furu and Choi, Yejin and Gao, Jianfeng},
  journal={ECCV 2020},
  year={2020}
}

@article{zhang2021vinvl,
  title={VinVL: Making Visual Representations Matter in Vision-Language Models},
  author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng},
  journal={CVPR 2021},
  year={2021}
}

License

Oscar is released under the MIT license. See LICENSE for details.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022