TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

Overview

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL


TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods. We leverage Box2D procedurally generated environments to assess the performance of teacher algorithms in continuous task spaces. Our repository provides:

  • Two parametric Box2D environments: Stumps Tracks and Parkour
  • Multiple embodiments with different locomotion skills (e.g. bipedal walker, spider, climbing chimpanzee, fish)
  • Two Deep RL students: SAC and PPO
  • Several ACL algorithms: ADR, ALP-GMM, Covar-GMM, SPDL, GoalGAN, Setter-Solver, RIAC
  • Two benchmark experiments using elements above: Skill-specific comparison and global performance assessment
  • Three notebooks for systematic analysis of results using statistical tests along with visualization tools (plots, videos...) allowing to reproduce our figures

See our documentation for an exhaustive list.

global_schema

Using this, we performed a benchmark of the previously mentioned ACL methods which can be seen in our paper. We also provide additional visualization on our website.

Installation

1- Get the repository

git clone https://github.com/flowersteam/TeachMyAgent
cd TeachMyAgent/

2- Install it, using Conda for example (use Python >= 3.6)

conda create --name teachMyAgent python=3.6
conda activate teachMyAgent
pip install -e .

Note: For Windows users, add -f https://download.pytorch.org/whl/torch_stable.html to the pip install -e . command.

Import baseline results from our paper

In order to benchmark methods against the ones we evaluated in our paper you must download our results:

  1. Go to the notebooks folder
  2. Make the download_baselines.sh script executable: chmod +x download_baselines.sh
  3. Download results: ./download_baselines.sh

WARNING: This will download a zip weighting approximayely 4.5GB. Then, our script will extract the zip file in TeachMyAgent/data. Once extracted, results will weight approximately 15GB.

Usage

See our documentation for details on how to use our platform to benchmark ACL methods.

Development

See CONTRIBUTING.md for details.

Citing

If you use TeachMyAgent in your work, please cite the accompanying paper:

@inproceedings{romac2021teachmyagent,
  author    = {Cl{\'{e}}ment Romac and
               R{\'{e}}my Portelas and
               Katja Hofmann and
               Pierre{-}Yves Oudeyer},
  title     = {TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep
               {RL}},
  booktitle = {Proceedings of the 38th International Conference on Machine Learning,
               {ICML} 2021, 18-24 July 2021, Virtual Event},
  series    = {Proceedings of Machine Learning Research},
  volume    = {139},
  pages     = {9052--9063},
  publisher = {{PMLR}},
  year      = {2021}
}
Owner
Flowers Team
Flowers Team
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022