A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

Overview

Codacy Badge

AMAZ3DSim

AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery capacities, travel time and travelled distance of the agents and the loudness the network links experience. AMAZ3DSim is suitable for 3D network optimization tasks. AMAZ3DSim simulation of OSM Darmstadt scenario

Installation

Use the package manager pip to install foobar.

sudo apt install python3.8

pip install click
pip install tkinter

Usage

To start AMAZ3DSim with default settings

python3.8 CommandLineInterface.py

To open a small help doc listing the parameters of the CommandLineInterface.py

python3.8 CommandLineInterface.py --help

A full command specified all of the following paramters

python3.8 CommandLineInterface.py --in-file /path/to/scenario.xml --out-file /path/to/output.xml --configfile /path/to/config.xml --random False

If an argument is left out, a standard value is used.

Configuration

A fully commented example configuration is available under

config/config.xml

which is also the standard configuration.

Input interface of the simulator

To simulate your own network, create your own scenario.xml file. A scenario.xml contains the network, the agents and the delivery orders to be fulfilled.

Example scenario.xml files are available in the input folder.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

License

MIT

You might also like...
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Lux AI environment interface for RLlib multi-agents
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

A multi-entity Transformer for multi-agent spatiotemporal modeling.
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Comments
  • Error in scenarioParser

    Error in scenarioParser

    Starting the CommandLineInterface on default settings causes an error (see screenshot). The problem stays also with the simple scenario, but without lines 157-162 in ScenarioParser, it works.

    issue
    opened by JuliaBlome 3
  • Overloaded link lets agents freely travel despite capacity

    Overloaded link lets agents freely travel despite capacity

    An input scenario that places too many agents on a link should be handled realistically by the simulator.

    e.g. 50 agents can be placed on a capacity 1 link, but then only 1 agent should be able to move

    As of now, all agents move freely on the first link they are generated on.

    opened by danieldeer 1
Releases(v1.0.0)
Owner
Daniel Hirsch
Software Engineer @ Telespazio 🛠 M.Sc. Electrical Engineering and Information Technology (TU Darmstadt) 📀
Daniel Hirsch
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Rohit Ingole 2 Mar 24, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023