Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

Overview

VQGAN-CLIP-Docker

About

Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

This is a stripped and minimal dependency repository for running locally or in production VQGAN+CLIP.

For a Google Colab notebook see the original repository.

Samples

Setup

Clone this repository and cd inside.

git clone https://github.com/kcosta42/VQGAN-CLIP-Docker.git
cd VQGAN-CLIP-Docker

Download a VQGAN model and put it in the ./models folder.

Dataset Link
ImageNet (f=16), 16384 vqgan_imagenet_f16_16384

For GPU capability, make sure you have CUDA installed on your system (tested with CUDA 11.1+).

  • 6 GB of VRAM is required to generate 256x256 images.
  • 11 GB of VRAM is required to generate 512x512 images.
  • 24 GB of VRAM is required to generate 1024x1024 images. (Untested)

Local

Install the Python requirements

python3 -m pip install -r requirements.txt

To know if you can run this on your GPU, the following command must return True.

python3 -c "import torch; print(torch.cuda.is_available());"

Docker

Make sure you have docker and docker-compose installed. nvidia-docker is needed if you want to run this on your GPU through Docker.

A Makefile is provided for ease of use.

make build  # Build the docker image

Usage

Two configuration file are provided ./configs/local.json and ./configs/docker.json. They are ready to go, but you may want to edit them to meet your need. Check the Configuration section to understand each field.

The resulting generations can be found in the ./outputs folder.

GPU

To run locally:

python3 -m scripts.generate -c ./configs/local.json

To run on docker:

make generate

CPU

To run locally:

DEVICE=cpu python3 -m scripts.generate -c ./configs/local.json

To run on docker:

make generate-cpu

Configuration

Argument Type Descriptions
prompts List[str] Text prompts
image_prompts List[FilePath] Image prompts / target image path
max_iterations int Number of iterations
save_freq int Save image iterations
size [int, int] Image size (width height)
init_image FilePath Initial image
init_noise str Initial noise image ['gradient','pixels']
init_weight float Initial weight
output_dir FilePath Path to output directory
models_dir FilePath Path to models cache directory
clip_model FilePath CLIP model path or name
vqgan_checkpoint FilePath VQGAN checkpoint path
vqgan_config FilePath VQGAN config path
noise_prompt_seeds List[int] Noise prompt seeds
noise_prompt_weights List[float] Noise prompt weights
step_size float Learning rate
cutn int Number of cuts
cut_pow float Cut power
seed int Seed (-1 for random seed)
optimizer str Optimiser ['Adam','AdamW','Adagrad','Adamax','DiffGrad','AdamP','RAdam']
augments List[str] Enabled augments ['Ji','Sh','Gn','Pe','Ro','Af','Et','Ts','Cr','Er','Re']

Acknowledgments

VQGAN+CLIP

Taming Transformers

CLIP

DALLE-PyTorch

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
@misc{esser2020taming,
      title={Taming Transformers for High-Resolution Image Synthesis},
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{ramesh2021zeroshot,
    title   = {Zero-Shot Text-to-Image Generation},
    author  = {Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
    year    = {2021},
    eprint  = {2102.12092},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Owner
Kevin Costa
Machine Learning Engineer. Previously Student @ 42 Paris
Kevin Costa
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022