Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

Overview

PyGAS: Auto-Scaling GNNs in PyG


PyGAS is the practical realization of our GNNAutoScale (GAS) framework, which scales arbitrary message-passing GNNs to large graphs, as described in our paper:

Matthias Fey, Jan E. Lenssen, Frank Weichert, Jure Leskovec: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings (ICML 2021)

GAS prunes entire sub-trees of the computation graph by utilizing historical embeddings from prior training iterations, leading to constant GPU memory consumption in respect to input mini-batch size, and maximally expressivity.

PyGAS is implemented in PyTorch and utilizes the PyTorch Geometric (PyG) library. It provides an easy-to-use interface to convert a common or custom GNN from PyG into its scalable variant:

from torch_geometric.nn import SAGEConv
from torch_geometric_autoscale import ScalableGNN
from torch_geometric_autoscale import metis, permute, SubgraphLoader

class GNN(ScalableGNN):
    def __init__(self, num_nodes, in_channels, hidden_channels,
                 out_channels, num_layers):
        # * pool_size determines the number of pinned CPU buffers
        # * buffer_size determines the size of pinned CPU buffers,
        #   i.e. the maximum number of out-of-mini-batch nodes

        super().__init__(num_nodes, hidden_channels, num_layers,
                         pool_size=2, buffer_size=5000)

        self.convs = ModuleList()
        self.convs.append(SAGEConv(in_channels, hidden_channels))
        for _ in range(num_layers - 2):
            self.convs.append(SAGEConv(hidden_channels, hidden_channels))
        self.convs.append(SAGEConv(hidden_channels, out_channels))

    def forward(self, x, adj_t, *args):
        for conv, history in zip(self.convs[:-1], self.histories):
            x = conv(x, adj_t).relu_()
            x = self.push_and_pull(history, x, *args)
        return self.convs[-1](x, adj_t)

perm, ptr = metis(data.adj_t, num_parts=40, log=True)
data = permute(data, perm, log=True)
loader = SubgraphLoader(data, ptr, batch_size=10, shuffle=True)

model = GNN(...)
for batch, *args in loader:
    out = model(batch.x, batch.adj_t, *args)

A detailed description of ScalableGNN can be found in its implementation.

Requirements

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-geometric

where ${TORCH} should be replaced by either 1.7.0 or 1.8.0, and ${CUDA} should be replaced by either cpu, cu92, cu101, cu102, cu110 or cu111, depending on your PyTorch installation.

Installation

pip install git+https://github.com/rusty1s/pyg_autoscale.git

or

python setup.py install

Project Structure

  • torch_geometric_autoscale/ contains the source code of PyGAS
  • examples/ contains examples to demonstrate how to apply GAS in practice
  • small_benchmark/ includes experiments to evaluate GAS performance on small-scale graphs
  • large_benchmark/ includes experiments to evaluate GAS performance on large-scale graphs

We use Hydra to manage hyperparameter configurations.

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{Fey/etal/2021,
  title={{GNNAutoScale}: Scalable and Expressive Graph Neural Networks via Historical Embeddings},
  author={Fey, M. and Lenssen, J. E. and Weichert, F. and Leskovec, J.},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2021},
}
Owner
Matthias Fey
PhD student @ TU Dortmund University - Interested in Representation Learning on Graphs and Manifolds; PyTorch, CUDA, Vim and macOS Enthusiast
Matthias Fey
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022