Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Overview

MI-AOD

Language: 简体中文 | English

Introduction

This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available temporarily), CVPR 2021.

Other introduction and figures are not available temporarily.

Installation

A Linux platform (Ours are Ubuntu 18.04 LTS) and anaconda3 is recommended, since they can install and manage environments and packages conveniently and efficiently.

A TITAN V GPU and CUDA 10.2 with CuDNN 7.6.5 is recommended, since they can speed up model training.

After anaconda3 installation, you can create a conda environment as below:

conda create -n miaod python=3.7 -y
conda activate miaod

Please refer to MMDetection v2.3.0 and the install.md of it for environment installation.

And then please clone this repository as below:

git clone https://github.com/yuantn/MI-AOD.git
cd MI-AOD

If it is too slow, you can also try downloading the repository like this:

wget https://github.com/yuantn/MI-AOD/archive/master.zip
unzip master.zip
cd MI-AOD-master

Modification in the mmcv Package

To train with two dataloaders (i.e., the labeled set dataloader and the unlabeled set dataloader mentioned in the paper) at the same time, you will need to modify the epoch_based_runner.py in the mmcv package.

Considering that this will affect all code that uses this environment, so we suggest you set up a separate environment for MI-AOD (i.e., the miaod environment created above).

cp -v epoch_based_runner.py ~/anaconda3/envs/miaod/lib/python3.7/site-packages/mmcv/runner/

After that, if you have modified anything in the mmcv package (including but not limited to: updating/re-installing Python, PyTorch, mmdetection, mmcv, mmcv-full, conda environment), you are supposed to copy the “epoch_base_runner.py” provided in this repository to the mmcv directory again. (Issue #3)

Datasets Preparation

Please download VOC2007 datasets ( trainval + test ) and VOC2012 datasets ( trainval ) from:

VOC2007 ( trainval ): http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar

VOC2007 ( test ): http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

VOC2012 ( trainval ): http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

And after that, please ensure the file directory tree is as below:

├── VOCdevkit
│   ├── VOC2007
│   │   ├── Annotations
│   │   ├── ImageSets
│   │   ├── JPEGImages
│   ├── VOC2012
│   │   ├── Annotations
│   │   ├── ImageSets
│   │   ├── JPEGImages

You may also use the following commands directly:

cd $YOUR_DATASET_PATH
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_06-Nov-2007.tar
tar -xf VOCtest_06-Nov-2007.tar
tar -xf VOCtrainval_11-May-2012.tar

After that, please modify the corresponding dataset directory in this repository, they are located in:

Line 1 of configs/MIAOD.py: data_root='$YOUR_DATASET_PATH/VOCdevkit/'
Line 1 of configs/_base_/voc0712.py: data_root='$YOUR_DATASET_PATH/VOCdevkit/'

Please change the $YOUR_DATASET_PATHs above to your actual dataset directory (i.e., the directory where you intend to put the downloaded VOC tar file).

And please use the absolute path (i.e., start with /) but not a relative path (i.e., start with ./ or ../).

Training and Test

We recommend you to use a GPU but not a CPU to train and test, because it will greatly shorten the time.

And we also recommend you to use a single GPU, because the usage of multi-GPU may result in errors caused by the multi-processing of the dataloader.

If you use only a single GPU, you can use the script.sh file directly as below:

chmod 777 ./script.sh
./script.sh $YOUR_GPU_ID

Please change the $YOUR_GPU_ID above to your actual GPU ID number (usually a non-negative number).

Please ignore the error rm: cannot remove './log_nohup/nohup_$YOUR_GPU_ID.log': No such file or directory if you run the script.sh file for the first time.

The script.sh file will use the GPU with the ID number $YOUR_GPU_ID and PORT (30000+$YOUR_GPU_ID*100) to train and test.

The log file will not flush in the terminal, but will be saved and updated in the file ./log_nohup/nohup_$YOUR_GPU_ID.log and ./work_dirs/MI-AOD/$TIMESTAMP.log . These two logs are the same. You can change the directories and names of the latter log files in Line 48 of ./configs/MIAOD.py .

You can also use other files in the directory './work_dirs/MI-AOD/ if you like, they are as follows:

  • JSON file $TIMESTAMP.log.json

    You can load the losses and mAPs during training and test from it more conveniently than from the ./work_dirs/MI-AOD/$TIMESTAMP.log file.

  • npy file X_L_$CYCLE.npy and X_U_$CYCLE.npy

    The $CYCLE is an integer from 0 to 6, which are the active learning cycles.

    You can load the indexes of the labeled set and unlabeled set for each cycle from them.

    The indexes are the integers from 0 to 16550 for PASCAL VOC datasets, where 0 to 5010 is for PASCAL VOC 2007 trainval set and 5011 to 16550 for PASCAL VOC 2012 trainval set.

    An example code for loading these files is the Line 108-114 in the ./tools/train.py file (which are in comments now).

  • pth file epoch_$EPOCH.pth and latest.pth

    The $EPOCH is an integer from 0 to 2, which are the epochs of the last label set training.

    You can load the model state dictionary from them.

    An example code for loading these files is the Line 109, 143-145 in the ./tools/train.py file (which are in comments now).

  • txt file trainval_L_07.txt, trainval_U_07.txt, trainval_L_12.txt and trainval_U_12.txt in each cycle$CYCLE directory

    The $CYCLE is the same as above.

    You can load the names of JPEG images of the labeled set and unlabeled set for each cycle from them.

    "L" is for the labeled set and "U" is for the unlabeled set. "07" is for the PASCAL VOC 2007 trainval set and "12" is for the PASCAL VOC 2012 trainval set.

An example output folder is provided on Google Drive and Baidu Drive, including the log file, the last trained model, and all other files above.

Code Structure

├── $YOUR_ANACONDA_DIRECTORY
│   ├── anaconda3
│   │   ├── envs
│   │   │   ├── miaod
│   │   │   │   ├── lib
│   │   │   │   │   ├── python3.7
│   │   │   │   │   │   ├── site-packages
│   │   │   │   │   │   │   ├── mmcv
│   │   │   │   │   │   │   │   ├── runner
│   │   │   │   │   │   │   │   │   ├── epoch_based_runner.py
│
├── ...
│
├── configs
│   ├── _base_
│   │   ├── default_runtime.py
│   │   ├── retinanet_r50_fpn.py
│   │   ├── voc0712.py
│   ├── MIAOD.py
│── log_nohup
├── mmdet
│   ├── apis
│   │   ├── __init__.py
│   │   ├── test.py
│   │   ├── train.py
│   ├── models
│   │   ├── dense_heads
│   │   │   ├── __init__.py
│   │   │   ├── MIAOD_head.py
│   │   │   ├── MIAOD_retina_head.py
│   │   │   ├── base_dense_head.py 
│   │   ├── detectors
│   │   │   ├── base.py
│   │   │   ├── single_stage.py
│   ├── utils
│   │   ├── active_datasets.py
├── tools
│   ├── train.py
├── work_dirs
│   ├── MI-AOD
├── script.sh

The code files and folders shown above are the main part of MI-AOD, while other code files and folders are created following MMDetection to avoid potential problems.

The explanation of each code file or folder is as follows:

  • epoch_based_runner.py: Code for training and test in each epoch, which can be called by ./apis/train.py.

  • configs: Configuration folder, including running settings, model settings, dataset settings and other custom settings for active learning and MI-AOD.

    • __base__: Base configuration folder provided by MMDetection, which only need a little modification and then can be recalled by .configs/MIAOD.py.

      • default_runtime.py: Configuration code for running settings, which can be called by ./configs/MIAOD.py.

      • retinanet_r50_fpn.py: Configuration code for model training and test settings, which can be called by ./configs/MIAOD.py.

      • voc0712.py: Configuration code for PASCAL VOC dataset settings and data preprocessing, which can be called by ./configs/MIAOD.py.

    • MIAOD.py: Configuration code in general including most custom settings, containing active learning dataset settings, model training and test parameter settings, custom hyper-parameter settings, log file and model saving settings, which can be mainly called by ./tools/train.py. The more detailed introduction of each parameter is in the comments of this file.

  • log_nohup: Log folder for storing log output on each GPU temporarily.

  • mmdet: The core code folder for MI-AOD, including intermidiate training code, object detectors and detection heads and active learning dataset establishment.

    • apis: The inner training, test and calculating uncertainty code folder of MI-AOD.

      • __init__.py: Some function initialization in the current folder.

      • test.py: Code for testing the model and calculating uncertainty, which can be called by epoch_based_runner.py and ./tools/train.py.

      • train.py: Code for setting random seed and creating training dataloaders to prepare for the following epoch-level training, which can be called by ./tools/train.py.

    • models: The code folder with the details of network model architecture, training loss, forward propagation in test and calculating uncertainty.

      • dense_heads: The code folder of training loss and the network model architecture, especially the well-designed head architecture.

        • __init__.py: Some function initialization in the current folder.

        • MIAOD_head.py: Code for forwarding anchor-level model output, calculating anchor-level loss, generating pseudo labels and getting bounding boxes from existing model output in more details, which can be called by ./mmdet/models/dense_heads/base_dense_head.py and ./mmdet/models/detectors/single_stage.py.

        • MIAOD_retina_head.py: Code for building the MI-AOD model architecture, especially the well-designed head architecture, and define the forward output, which can be called by ./mmdet/models/dense_heads/MIAOD_head.py.

        • base_dense_head.py: Code for choosing different equations to calculate loss, which can be called by ./mmdet/models/detectors/single_stage.py.

      • detectors: The code folder of the forward propogation and backward propogation in the overall training, test and calculating uncertainty process.

        • base.py: Code for arranging training loss to print and returning the loss and image information, which can be called by epoch_based_runner.py.

        • single_stage.py: Code for extracting image features, getting bounding boxes from the model output and returning the loss, which can be called by ./mmdet/models/detectors/base.py.

    • utils: The code folder for creating active learning datasets.

      • active_dataset.py: Code for creating active learning datasets, including creating initial labeled set, creating the image name file for the labeled set and unlabeled set and updating the labeled set after each active learning cycle, which can be called by ./tools/train.py.
  • tools: The outer training and test code folder of MI-AOD.

    • train.py: Outer code for training and test for MI-AOD, including generating PASCAL VOC datasets for active learning, loading image sets and models, Instance Uncertainty Re-weighting and Informative Image Selection in general, which can be called by ./script.sh.
  • work_dirs: Work directory of the index and image name of the labeled set and unlabeled set for each cycle, all log and json outputs and the model state dictionary for the last 3 cycle, which are introduced in the Training and Test part above.

  • script.sh: The script to run MI-AOD on a single GPU. You can run it to train and test MI-AOD simply and directly mentioned in the Training and Test part above as long as you have prepared the conda environment and PASCAL VOC 2007+2012 datasets.

Citation

If you find this repository useful for your publications, please consider citing our paper. (The PDF is not available temporarily)

@inproceedings{MIAOD2021,
    author    = {Tianning Yuan and
                 Fang Wan and
                 Mengying Fu and
                 Jianzhuang Liu and
                 Songcen Xu and
                 Xiangyang Ji and
                 Qixiang Ye},
    title     = {Multiple Instance Active Learning for Object Detection},
    booktitle = {CVPR},
    year      = {2021}
}

Acknowledgement

In this repository, we reimplemented RetinaNet on PyTorch based on mmdetection.

Owner
Tianning Yuan
A master candidate of UCAS (University of Chinese Academy of Sciences).
Tianning Yuan
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022