PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Overview

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks.

Code, based on the PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks.

Install Requirements

Tested with python 3.8.

pip install -r requirements.txt

1. Incremental Hierarchical Tensor Rank Learning

1.1 Generating Data

Matrix Completion/Sensing

python matrix_factorization_data_generator.py --task_type completion
  • Setting task_type to "sensing" will generate matrix sensing data.
  • Use the -h flag for information on the customizable run arguments.

Tensor Completion/Sensing

python tensor_sensing_data_generator.py --task_type completion
  • Setting task_type to "sensing" will generate tensor sensing data.
  • Use the -h flag for information on the customizable run arguments.

1.2 Running Experiments

Matrix Factorization

python matrix_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/mf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

Tensor Factorization

python tensor_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/tf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

Hierarchical Tensor Factorization

python hierarchical_tensor_factorization_experiments_runner.py \
--dataset_path 
   
     \
--epochs 500000 \
--num_train_samples 2048 \
--outputs_dir "outputs/htf_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 25 \
--save_every_num_val 50 \
--epoch_log_interval 25 \
--train_batch_log_interval -1 

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

1.3 Plotting Results

Plotting metrics against the number of iterations for an experiment (or multiple experiments) can be done by:

python dynamical_analysis_results_multi_plotter.py \
--plot_config_path 
   

   
  • plot_config_path should point to a file with the plot configuration. For example, plot_configs/mf_tf_htf_dyn_plot_config.json is the configuration used to create the plot below. To run it, it suffices to fill in the checkpoint_path fields (checkpoints are created during training inside the respective experiment's folder).

Example plot:

2. Countering Locality Bias of Convolutional Networks via Regularization

2.1. Is Same Class

2.1.1 Generating Data

Generating train data is done by running:

python is_same_class_data_generator.py --train --num_samples 5000

For test data use:

python is_same_class_data_generator.py --num_samples 10000
  • Use the output_dir argument to set the output directory in which the datasets will be saved (default is ./data/is_same).
  • The flag train determines whether to generate the dataset using the train or test set of the original dataset.
  • Specify num_samples to set how many samples to generate.
  • Use the -h flag for information on the customizable run arguments.

2.1.2 Running Experiments

python is_same_class_experiments_runner.py \
--train_dataset_path 
   
     \
--test_dataset_path 
    
      \
--epochs 150 \
--outputs_dir "outputs/is_same_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 1 \
--save_every_num_val 1 \
--epoch_log_interval 1 \
--train_batch_log_interval 50 \
--stop_on_perfect_train_acc \
--stop_on_perfect_train_acc_patience 20 \
--model resnet18 \
--distance 0 \
--grad_change_reg_coeff 0

    
   
  • train_dataset_path and test_dataset_path are the paths of the train and test dataset files, respectively.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

2.1.3 Plotting Results

Plotting different regularization options against the task difficulty can be done by:

\ --error_bars_opacity 0.5 ">
python locality_bias_plotter.py \
--experiments_dir 
   
     \
--experiment_groups_dir_names 
     
     
       .. \
--per_experiment_group_y_axis_value_name 
       
       
         .. \ --per_experiment_group_label 
         
         
           .. \ --x_axis_value_name "distance" \ --plot_title "Is Same Class" \ --x_label "distance between images" \ --y_label "test accuracy (%)" \ --save_plot_to 
          
            \ --error_bars_opacity 0.5 
          
         
        
       
      
     
    
   
  • Set experiments_dir to the directory containing the experiments you would like to plot.
  • Specify after experiment_groups_dir_names the names of the experiment groups, each group name should correspond to a sub-directory with the group name under experiments_dir path.
  • Use per_experiment_group_y_axis_value_name to name the report value for each experiment. Name should match key in experiment's summary.json files. Use dot notation for nested keys.
  • per_experiment_group_label sets a label for the groups by the same order they were mentioned.
  • save_plot_to is the path to save the plot at.
  • Use x_axis_value_name to set the name of the value to use as the x-axis. This should match to a key in either summary.json or config.json files. Use dot notation for nested keys.
  • Use the -h flag for information on the customizable run arguments.

Example plots:

2.2. Pathfinder

2.2.1 Generating Data

To generate Pathfinder datasets, first run the following command to create raw image samples for all specified path lengths:

python pathfinder_raw_images_generator.py \
--num_samples 20000 \
--path_lengths 3 5 7 9
  • Use the output_dir argument to set the output directory in which the raw samples will be saved (default is ./data/pathfinder/raw).
  • The samples for each path length are separated to different directories.
  • Use the -h flag for information on the customizable run arguments.

Then, use the following command to create the dataset files for all path lengths (one dataset per length):

python pathfinder_data_generator.py \
--dataset_path data/pathfinder/raw \
--num_train_samples 10000 \
--num_test_samples 10000
  • dataset_path is the path to the directory of the raw images.
  • Use the output_dir argument to set the output directory in which the datasets will be saved (default is ./data/pathfinder).
  • Use the -h flag for information on the customizable run arguments.

2.2.2 Running Experiments

python pathfinder_experiments_runner.py \
--dataset_path 
   
     \
--epochs 150 \
--outputs_dir "outputs/pathfinder_exps" \
--save_logs \
--save_metric_plots \
--save_checkpoints \
--validate_every 1 \
--save_every_num_val 1 \
--epoch_log_interval 1 \
--train_batch_log_interval 50 \
--stop_on_perfect_train_acc \
--stop_on_perfect_train_acc_patience 20 \
--model resnet18 \
--grad_change_reg_coeff 0

   
  • dataset_path should point to the dataset file generated in the previous step.
  • A folder with checkpoints, metric plots, and a log file will be automatically created under the directory specified by outputs_dir.
  • Use the -h flag for information on the customizable run arguments.

2.2.3 Plotting Results

Plotting different regularization options against the task difficulty can be done by:

\ --error_bars_opacity 0.5">
python locality_bias_plotter.py \
--experiments_dir 
   
     \
--experiment_groups_dir_names 
     
     
       .. \
--per_experiment_group_y_axis_value_name 
       
       
         .. \ --per_experiment_group_label 
         
         
           .. \ --x_axis_value_name "dataset_path" \ --plot_title "Pathfinder" \ --x_label "path length" \ --y_label "test accuracy (%)" \ --x_axis_ticks 3 5 7 9 \ --save_plot_to 
          
            \ --error_bars_opacity 0.5 
          
         
        
       
      
     
    
   
  • Set experiments_dir to the directory containing the experiments you would like to plot.
  • Specify after experiment_groups_dir_names the names of the experiment groups, each group name should correspond to a sub-directory with the group name under experiments_dir path.
  • Use per_experiment_group_y_axis_value_name to name the report value for each experiment. Name should match key in experiment's summary.json files. Use dot notation for nested keys.
  • per_experiment_group_label sets a label for the groups by the same order they were mentioned.
  • save_plot_to is the path to save the plot at.
  • Use x_axis_value_name to set the name of the value to use as the x-axis. This should match to a key in either summary.json or config.json files. Use dot notation for nested keys.
  • Use the -h flag for information on the customizable run arguments.

Example plots:

Citation

For citing the paper, you can use:

@article{razin2022implicit,
  title={Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks},
  author={Razin, Noam and Maman, Asaf and Cohen, Nadav},
  journal={arXiv preprint arXiv:2201.11729},
  year={2022}
}
Owner
Asaf
MS.c Student Computer Science
Asaf
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023