Invert and perturb GAN images for test-time ensembling

Overview

GAN Ensembling

Project Page | Paper | Bibtex

Ensembling with Deep Generative Views.
Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhang
CVPR 2021

Prerequisites

  • Linux
  • Python 3
  • NVIDIA GPU + CUDA CuDNN

Table of Contents:

  1. Colab - run a limited demo version without local installation
  2. Setup - download required resources
  3. Quickstart - short demonstration code snippet
  4. Notebooks - jupyter notebooks for visualization
  5. Pipeline - details on full pipeline

We project an input image into the latent space of a pre-trained GAN and perturb it slightly to obtain modifications of the input image. These alternative views from the GAN are ensembled at test-time, together with the original image, in a downstream classification task.

To synthesize deep generative views, we first align (Aligned Input) and reconstruct an image by finding the corresponding latent code in StyleGAN2 (GAN Reconstruction). We then investigate different approaches to produce image variations using the GAN, such as style-mixing on fine layers (Style-mix Fine), which predominantly changes color, or coarse layers (Style-mix Coarse), which changes pose.

Colab

This Colab Notebook demonstrates the basic latent code perturbation and classification procedure in a simplified setting on the aligned cat dataset.

Setup

  • Clone this repo:
git clone https://github.com/chail/gan-ensembling.git
cd gan-ensembling

An example of the directory organization is below:

dataset/celebahq/
	images/images/
		000004.png
		000009.png
		000014.png
		...
	latents/
	latents_idinvert/
dataset/cars/
	devkit/
		cars_meta.mat
		cars_test_annos.mat
		cars_train_annos.mat
		...
	images/images/
		00001.jpg
		00002.jpg
		00003.jpg
		...
	latents/
dataset/catface/
	images/
	latents/
dataset/cifar10/
	cifar-10-batches-py/
	latents/

Quickstart

Once the datasets and precomputed resources are downloaded, the following code snippet demonstrates how to perturb GAN images. Additional examples are contained in notebooks/demo.ipynb.

import data
from networks import domain_generator

dataset_name = 'celebahq'
generator_name = 'stylegan2'
attribute_name = 'Smiling'
val_transform = data.get_transform(dataset_name, 'imval')
dset = data.get_dataset(dataset_name, 'val', attribute_name, load_w=True, transform=val_transform)
generator = domain_generator.define_generator(generator_name, dataset_name)

index = 100
original_image = dset[index][0][None].cuda()
latent = dset[index][1][None].cuda()
gan_reconstruction = generator.decode(latent)
mix_latent = generator.seed2w(n=4, seed=0)
perturbed_im = generator.perturb_stylemix(latent, 'fine', mix_latent, n=4)

Notebooks

Important: First, set up symlinks required for notebooks: bash notebooks/setup_notebooks.sh, and add the conda environment to jupyter kernels: python -m ipykernel install --user --name gan-ensembling.

The provided notebooks are:

  1. notebooks/demo.ipynb: basic usage example
  2. notebooks/evaluate_ensemble.ipynb: plot classification test accuracy as a function of ensemble weight
  3. notebooks/plot_precomputed_evaluations.ipynb: notebook to generate figures in paper

Full Pipeline

The full pipeline contains three main parts:

  1. optimize latent codes
  2. train classifiers
  3. evaluate the ensemble of GAN-generated images.

Examples for each step of the pipeline are contained in the following scripts:

bash scripts/optimize_latent/examples.sh
bash scripts/train_classifier/examples.sh
bash scripts/eval_ensemble/examples.sh

To add to the pipeline:

  • Data: in the data/ directory, add the dataset in data/__init__.py and create the dataset class and transformation functions. See data/data_*.py for examples.
  • Generator: modify networks/domain_generators.py to add the generator in domain_generators.define_generator. The perturbation ranges for each dataset and generator are specified in networks/perturb_settings.py.
  • Classifier: modify networks/domain_classifiers.py to add the classifier in domain_classifiers.define_classifier

Acknowledgements

We thank the authors of these repositories:

Citation

If you use this code for your research, please cite our paper:

@inproceedings{chai2021ensembling,
  title={Ensembling with Deep Generative Views.},
  author={Chai, Lucy and Zhu, Jun-Yan and Shechtman, Eli and Isola, Phillip and Zhang, Richard},
  booktitle={CVPR},
  year={2021}
 }
Owner
Lucy Chai
Lucy Chai
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❀️

Hello 🀟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship πŸ’ πŸ–¨οΈ πŸ‘¨β€πŸ’» HackBio: https://thehackbio.com πŸ’¬ Ask us

Siddhant Sharma 7 Oct 20, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
[ICML 2021] β€œ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021