Invert and perturb GAN images for test-time ensembling

Overview

GAN Ensembling

Project Page | Paper | Bibtex

Ensembling with Deep Generative Views.
Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhang
CVPR 2021

Prerequisites

  • Linux
  • Python 3
  • NVIDIA GPU + CUDA CuDNN

Table of Contents:

  1. Colab - run a limited demo version without local installation
  2. Setup - download required resources
  3. Quickstart - short demonstration code snippet
  4. Notebooks - jupyter notebooks for visualization
  5. Pipeline - details on full pipeline

We project an input image into the latent space of a pre-trained GAN and perturb it slightly to obtain modifications of the input image. These alternative views from the GAN are ensembled at test-time, together with the original image, in a downstream classification task.

To synthesize deep generative views, we first align (Aligned Input) and reconstruct an image by finding the corresponding latent code in StyleGAN2 (GAN Reconstruction). We then investigate different approaches to produce image variations using the GAN, such as style-mixing on fine layers (Style-mix Fine), which predominantly changes color, or coarse layers (Style-mix Coarse), which changes pose.

Colab

This Colab Notebook demonstrates the basic latent code perturbation and classification procedure in a simplified setting on the aligned cat dataset.

Setup

  • Clone this repo:
git clone https://github.com/chail/gan-ensembling.git
cd gan-ensembling

An example of the directory organization is below:

dataset/celebahq/
	images/images/
		000004.png
		000009.png
		000014.png
		...
	latents/
	latents_idinvert/
dataset/cars/
	devkit/
		cars_meta.mat
		cars_test_annos.mat
		cars_train_annos.mat
		...
	images/images/
		00001.jpg
		00002.jpg
		00003.jpg
		...
	latents/
dataset/catface/
	images/
	latents/
dataset/cifar10/
	cifar-10-batches-py/
	latents/

Quickstart

Once the datasets and precomputed resources are downloaded, the following code snippet demonstrates how to perturb GAN images. Additional examples are contained in notebooks/demo.ipynb.

import data
from networks import domain_generator

dataset_name = 'celebahq'
generator_name = 'stylegan2'
attribute_name = 'Smiling'
val_transform = data.get_transform(dataset_name, 'imval')
dset = data.get_dataset(dataset_name, 'val', attribute_name, load_w=True, transform=val_transform)
generator = domain_generator.define_generator(generator_name, dataset_name)

index = 100
original_image = dset[index][0][None].cuda()
latent = dset[index][1][None].cuda()
gan_reconstruction = generator.decode(latent)
mix_latent = generator.seed2w(n=4, seed=0)
perturbed_im = generator.perturb_stylemix(latent, 'fine', mix_latent, n=4)

Notebooks

Important: First, set up symlinks required for notebooks: bash notebooks/setup_notebooks.sh, and add the conda environment to jupyter kernels: python -m ipykernel install --user --name gan-ensembling.

The provided notebooks are:

  1. notebooks/demo.ipynb: basic usage example
  2. notebooks/evaluate_ensemble.ipynb: plot classification test accuracy as a function of ensemble weight
  3. notebooks/plot_precomputed_evaluations.ipynb: notebook to generate figures in paper

Full Pipeline

The full pipeline contains three main parts:

  1. optimize latent codes
  2. train classifiers
  3. evaluate the ensemble of GAN-generated images.

Examples for each step of the pipeline are contained in the following scripts:

bash scripts/optimize_latent/examples.sh
bash scripts/train_classifier/examples.sh
bash scripts/eval_ensemble/examples.sh

To add to the pipeline:

  • Data: in the data/ directory, add the dataset in data/__init__.py and create the dataset class and transformation functions. See data/data_*.py for examples.
  • Generator: modify networks/domain_generators.py to add the generator in domain_generators.define_generator. The perturbation ranges for each dataset and generator are specified in networks/perturb_settings.py.
  • Classifier: modify networks/domain_classifiers.py to add the classifier in domain_classifiers.define_classifier

Acknowledgements

We thank the authors of these repositories:

Citation

If you use this code for your research, please cite our paper:

@inproceedings{chai2021ensembling,
  title={Ensembling with Deep Generative Views.},
  author={Chai, Lucy and Zhu, Jun-Yan and Shechtman, Eli and Isola, Phillip and Zhang, Richard},
  booktitle={CVPR},
  year={2021}
 }
Owner
Lucy Chai
Lucy Chai
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022