An experiment to bait a generalized frontrunning MEV bot

Overview

Honeypot 🍯

A simple experiment that:

  • Creates a honeypot contract
  • Baits a generalized fronturnning bot with a unique transaction
  • Analyze bot behaviour using a black box approach

Final project for ChainShort bootcamp Oct 2021 cohort.

Presentation Deck

The project presentation deck is in presentation directory. It gives an overview about the project.

Experiment addresses and txs

Honeypot contract address: 0x1e232d5871979eaa715de2c38381574a9c886bad

Bot contract: 0x31B7e144b2CF261A015004BEE9c84a98263E2F66

Bot operator: 0x0a04e8b4d2014cd2d07a9eaf946945bed1262a99

Failed tx 1 (block 13710082, index 22): 0xcc1172506d5b5fa09cbf66d2296deb24958181f186817eb29cbe8385fd55ed51

Frontrun tx 1 (block 13710082, index 0): 0x18ec2c2e5720c6d332a0f308f8803e834e06c78dcebdc255178891ead56c6d73

Failed tx 2 (block 13710542, index 80): 0xfce9b77a8c7b8544cb699ce646558dc506e030aaba1533c917d7841bcc3f206a

Frontrun tx 2 (block 13710542, index 0): 0x8cda6e76f9a19ce69967d9f74d52402afbafba6ca3469248fe5c9937ef065d47

Running contract tests

The contract tests are written in Solidity. To run them:

  1. Install dapptools on your machine
  2. Navigate to the project root directory in terminal, then dapp install ds-test
  3. Rename .dapprc.template to .dapprc and add your Ethereum RPC endpoint
  4. Use dapp test to run the tests.

PnL dataset

To create or update the PnL dataset:

  1. Make sure you have Python 3 and the relevant modules installed on your machine
  2. Rename config.template.py to config.py and add your Etherscan API key and Alchemy RPC endpoint
  3. Run python analysis/create_pnl_datasets.py in your terminal

Analysis

You can view the analysis files on GitHub. If you want to edit and run them, you need to run Jupyter Notebook server with Anaconda or something similar.

Known limitations

These limitaitons are known by the time of the final presentation:

  • Unoptimized performance and too many JSON-RPC calls in when fetching data
  • PnL computation is based on heuristic, not EVM state changes
  • Outlier detection is based on manual sample check
  • A few hardcoded simplifications like constant token prices
  • No test for pnl.py and calldata.py
Owner
0x1355
Parsing json. Deciphering bytes. And putting it all together again.
0x1355
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021