A new video text spotting framework with Transformer

Overview

TransVTSpotter: End-to-end Video Text Spotter with Transformer

License: MIT

Introduction

A Multilingual, Open World Video Text Dataset and End-to-end Video Text Spotter with Transformer

Link to our MOVText: A Large-Scale, Multilingual Open World Dataset for Video Text Spotting

Updates

  • (08/04/2021) Refactoring the code.

  • (10/20/2021) The complete code has been released .

ICDAR2015(video) Tracking challenge

Methods MOTA MOTP IDF1 Mostly Matched Partially Matched Mostly Lost
TransVTSpotter 45.75 73.58 57.56 658 611 647

Models are also available in Baidu Drive by code m4iv.

Notes

  • The training time is on 8 NVIDIA V100 GPUs with batchsize 16.
  • We use the models pre-trained on COCOTextV2.
  • We do not release the recognition code due to the company's regulations.

Demo

Installation

The codebases are built on top of Deformable DETR and TransTrack.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4
  • Python>=3.7
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone [email protected]:weijiawu/TransVTSpotter.git
cd TransVTSpotter
cd models/ops
python setup.py build install
cd ../..
pip install -r requirements.txt
  1. Prepare datasets and annotations
# pretrain COCOTextV2
python3 track_tools/convert_COCOText_to_coco.py

# ICDAR15
python3 track_tools/convert_ICDAR15video_to_coco.py

COCOTextV2 dataset is available in COCOTextV2.

python3 track_tools/convert_crowdhuman_to_coco.py

ICDAR2015 dataset is available in icdar2015.

python3 track_tools/convert_mot_to_coco.py
  1. Pre-train on COCOTextV2
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_track.py  --output_dir ./output/Pretrain_COCOTextV2 --dataset_file pretrain --coco_path ./Data/COCOTextV2 --batch_size 2  --with_box_refine --num_queries 500 --epochs 300 --lr_drop 100 --resume ./output/Pretrain_COCOTextV2/checkpoint.pth

python3 track_tools/Pretrain_model_to_mot.py

The pre-trained model is available COCOTextV2_pretrain.pth, password:59w8. And the MOTA 44% can be found here password:xnlw.

  1. Train TransVTSpotter
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_track.py  --output_dir ./output/ICDAR15 --dataset_file text --coco_path ./Data/ICDAR2015_video --batch_size 2  --with_box_refine  --num_queries 300 --epochs 80 --lr_drop 40 --resume ./output/Pretrain_COCOTextV2/pretrain_coco.pth
  1. Visualize TransVTSpotter
python3 track_tools/Evaluation_ICDAR15_video/vis_tracking.py

License

TransVTSpotter is released under MIT License.

Citing

If you use TranVTSpotter in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022