Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Overview

Self-Supervised Multi-Frame Monocular Scene Flow

3D visualization of estimated depth and scene flow (overlayed with input image) from temporally consecutive images.
Trained on KITTI in a self-supervised manner, and tested on DAVIS.

This repository is the official PyTorch implementation of the paper:

   Self-Supervised Multi-Frame Monocular Scene Flow
   Junhwa Hur and Stefan Roth
   CVPR, 2021
   Arxiv

  • Contact: junhwa.hur[at]gmail.com

Installation

The code has been tested with Anaconda (Python 3.8), PyTorch 1.8.1 and CUDA 10.1 (Different Pytorch + CUDA version is also compatible).
Please run the provided conda environment setup file:

conda env create -f environment.yml
conda activate multi-mono-sf

(Optional) Using the CUDA implementation of the correlation layer accelerates training (~50% faster):

./install_correlation.sh

After installing it, turn on this flag --correlation_cuda_enabled=True in training/evaluation script files.

Dataset

Please download the following to datasets for the experiment:

To save space, we convert the KITTI Raw png images to jpeg, following the convention from MonoDepth:

find (data_folder)/ -name '*.png' | parallel 'convert {.}.png {.}.jpg && rm {}'

We also converted images in KITTI Scene Flow 2015 as well. Please convert the png images in image_2 and image_3 into jpg and save them into the seperate folder image_2_jpg and image_3_jpg.
To save space further, you can delete the velodyne point data in KITTI raw data as we don't need it.

Training and Inference

The scripts folder contains training/inference scripts.

For self-supervised training, you can simply run the following script files:

Script Training Dataset
./train_selfsup.sh Self-supervised KITTI Split

Fine-tuning is done with two stages: (i) first finding the stopping point using train/valid split, and then (ii) fune-tuning using all data with the found iteration steps.

Script Training Dataset
./ft_1st_stage.sh Semi-supervised finetuning KITTI raw + KITTI 2015
./ft_2nd_stage.sh Semi-supervised finetuning KITTI raw + KITTI 2015

In the script files, please configure these following PATHs for experiments:

  • DATA_HOME : the directory where the training or test is located in your local system.
  • EXPERIMENTS_HOME : your own experiment directory where checkpoints and log files will be saved.

To test pretrained models, you can simply run the following script files:

Script Training Dataset
./eval_selfsup_train.sh self-supervised KITTI 2015 Train
./eval_ft_test.sh fine-tuned KITTI 2015 Test
./eval_davis.sh self-supervised DAVIS (one scene)
./eval_davis_all.sh self-supervised DAVIS (all scenes)
  • To save visuailization of outputs, please turn on --save_vis=True in the script.
  • To save output images for KITTI Scene Flow 2015 Benchmark submission, please turn on --save_out=True in the script.

Pretrained Models

The checkpoints folder contains the checkpoints of the pretrained models.

Acknowledgement

Please cite our paper if you use our source code.

@inproceedings{Hur:2021:SSM,  
  Author = {Junhwa Hur and Stefan Roth},  
  Booktitle = {CVPR},  
  Title = {Self-Supervised Multi-Frame Monocular Scene Flow},  
  Year = {2021}  
}
  • Portions of the source code (e.g., training pipeline, runtime, argument parser, and logger) are from Jochen Gast
Owner
Visual Inference Lab @TU Darmstadt
Visual Inference Lab @TU Darmstadt
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022