Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

Overview

[AAAI2022] UCTransNet

This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer" which is accepted at AAAI2022.

framework

We propose a Channel Transformer module (CTrans) and use it to replace the skip connections in original U-Net, thus we name it "U-CTrans-Net".

Requirements

Install from the requirements.txt using:

pip install -r requirements.txt

Usage

1. Data Preparation

1.1. GlaS and MoNuSeg Datasets

The original data can be downloaded in following links:

Then prepare the datasets in the following format for easy use of the code:

├── datasets
    ├── GlaS
    │   ├── Test_Folder
    │   │   ├── img
    │   │   └── labelcol
    │   ├── Train_Folder
    │   │   ├── img
    │   │   └── labelcol
    │   └── Val_Folder
    │       ├── img
    │       └── labelcol
    └── MoNuSeg
        ├── Test_Folder
        │   ├── img
        │   └── labelcol
        ├── Train_Folder
        │   ├── img
        │   └── labelcol
        └── Val_Folder
            ├── img
            └── labelcol

1.2. Synapse Dataset

The Synapse dataset we used is provided by TransUNet's authors. Please go to https://github.com/Beckschen/TransUNet/blob/main/datasets/README.md for details.

2. Training

As mentioned in the paper, we introduce two strategies to optimize UCTransNet.

The first step is to change the settings in Config.py, all the configurations including learning rate, batch size and etc. are in it.

2.1 Jointly Training

We optimize the convolution parameters in U-Net and the CTrans parameters together with a single loss. Run:

python train_model.py

2.2 Pre-training

Our method just replaces the skip connections in U-Net, so the parameters in U-Net can be used as part of pretrained weights.

By first training a classical U-Net using /nets/UNet.py then using the pretrained weights to train the UCTransNet, CTrans module can get better initial features.

This strategy can improve the convergence speed and may improve the final segmentation performance in some cases.

3. Testing

3.1. Get Pre-trained Models

Here, we provide pre-trained weights on GlaS and MoNuSeg, if you do not want to train the models by yourself, you can download them in the following links:

3.2. Test the Model and Visualize the Segmentation Results

First, change the session name in Config.py as the training phase. Then run:

python test_model.py

You can get the Dice and IoU scores and the visualization results.

4. Reproducibility

In our code, we carefully set the random seed and set cudnn as 'deterministic' mode to eliminate the randomness. However, there still exsist some factors which may cause different training results, e.g., the cuda version, GPU types, the number of GPUs and etc. The GPU used in our experiments is NVIDIA A40 (48G) and the cuda version is 11.2.

Especially for multi-GPU cases, the upsampling operation has big problems with randomness. See https://pytorch.org/docs/stable/notes/randomness.html for more details.

When training, we suggest to train the model twice to verify wheather the randomness is eliminated. Because we use the early stopping strategy, the final performance may change significantly due to the randomness.

Reference

Citations

If this code is helpful for your study, please cite:

@misc{wang2021uctransnet,
      title={UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer}, 
      author={Haonan Wang and Peng Cao and Jiaqi Wang and Osmar R. Zaiane},
      year={2021},
      eprint={2109.04335},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

Haonan Wang ([email protected])

Owner
Haonan Wang
Haonan Wang
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022