Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

Overview

[AAAI2022] UCTransNet

This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer" which is accepted at AAAI2022.

framework

We propose a Channel Transformer module (CTrans) and use it to replace the skip connections in original U-Net, thus we name it "U-CTrans-Net".

Requirements

Install from the requirements.txt using:

pip install -r requirements.txt

Usage

1. Data Preparation

1.1. GlaS and MoNuSeg Datasets

The original data can be downloaded in following links:

Then prepare the datasets in the following format for easy use of the code:

├── datasets
    ├── GlaS
    │   ├── Test_Folder
    │   │   ├── img
    │   │   └── labelcol
    │   ├── Train_Folder
    │   │   ├── img
    │   │   └── labelcol
    │   └── Val_Folder
    │       ├── img
    │       └── labelcol
    └── MoNuSeg
        ├── Test_Folder
        │   ├── img
        │   └── labelcol
        ├── Train_Folder
        │   ├── img
        │   └── labelcol
        └── Val_Folder
            ├── img
            └── labelcol

1.2. Synapse Dataset

The Synapse dataset we used is provided by TransUNet's authors. Please go to https://github.com/Beckschen/TransUNet/blob/main/datasets/README.md for details.

2. Training

As mentioned in the paper, we introduce two strategies to optimize UCTransNet.

The first step is to change the settings in Config.py, all the configurations including learning rate, batch size and etc. are in it.

2.1 Jointly Training

We optimize the convolution parameters in U-Net and the CTrans parameters together with a single loss. Run:

python train_model.py

2.2 Pre-training

Our method just replaces the skip connections in U-Net, so the parameters in U-Net can be used as part of pretrained weights.

By first training a classical U-Net using /nets/UNet.py then using the pretrained weights to train the UCTransNet, CTrans module can get better initial features.

This strategy can improve the convergence speed and may improve the final segmentation performance in some cases.

3. Testing

3.1. Get Pre-trained Models

Here, we provide pre-trained weights on GlaS and MoNuSeg, if you do not want to train the models by yourself, you can download them in the following links:

3.2. Test the Model and Visualize the Segmentation Results

First, change the session name in Config.py as the training phase. Then run:

python test_model.py

You can get the Dice and IoU scores and the visualization results.

4. Reproducibility

In our code, we carefully set the random seed and set cudnn as 'deterministic' mode to eliminate the randomness. However, there still exsist some factors which may cause different training results, e.g., the cuda version, GPU types, the number of GPUs and etc. The GPU used in our experiments is NVIDIA A40 (48G) and the cuda version is 11.2.

Especially for multi-GPU cases, the upsampling operation has big problems with randomness. See https://pytorch.org/docs/stable/notes/randomness.html for more details.

When training, we suggest to train the model twice to verify wheather the randomness is eliminated. Because we use the early stopping strategy, the final performance may change significantly due to the randomness.

Reference

Citations

If this code is helpful for your study, please cite:

@misc{wang2021uctransnet,
      title={UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer}, 
      author={Haonan Wang and Peng Cao and Jiaqi Wang and Osmar R. Zaiane},
      year={2021},
      eprint={2109.04335},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

Haonan Wang ([email protected])

Owner
Haonan Wang
Haonan Wang
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022