Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

Overview

[AAAI2022] UCTransNet

This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer" which is accepted at AAAI2022.

framework

We propose a Channel Transformer module (CTrans) and use it to replace the skip connections in original U-Net, thus we name it "U-CTrans-Net".

Requirements

Install from the requirements.txt using:

pip install -r requirements.txt

Usage

1. Data Preparation

1.1. GlaS and MoNuSeg Datasets

The original data can be downloaded in following links:

Then prepare the datasets in the following format for easy use of the code:

├── datasets
    ├── GlaS
    │   ├── Test_Folder
    │   │   ├── img
    │   │   └── labelcol
    │   ├── Train_Folder
    │   │   ├── img
    │   │   └── labelcol
    │   └── Val_Folder
    │       ├── img
    │       └── labelcol
    └── MoNuSeg
        ├── Test_Folder
        │   ├── img
        │   └── labelcol
        ├── Train_Folder
        │   ├── img
        │   └── labelcol
        └── Val_Folder
            ├── img
            └── labelcol

1.2. Synapse Dataset

The Synapse dataset we used is provided by TransUNet's authors. Please go to https://github.com/Beckschen/TransUNet/blob/main/datasets/README.md for details.

2. Training

As mentioned in the paper, we introduce two strategies to optimize UCTransNet.

The first step is to change the settings in Config.py, all the configurations including learning rate, batch size and etc. are in it.

2.1 Jointly Training

We optimize the convolution parameters in U-Net and the CTrans parameters together with a single loss. Run:

python train_model.py

2.2 Pre-training

Our method just replaces the skip connections in U-Net, so the parameters in U-Net can be used as part of pretrained weights.

By first training a classical U-Net using /nets/UNet.py then using the pretrained weights to train the UCTransNet, CTrans module can get better initial features.

This strategy can improve the convergence speed and may improve the final segmentation performance in some cases.

3. Testing

3.1. Get Pre-trained Models

Here, we provide pre-trained weights on GlaS and MoNuSeg, if you do not want to train the models by yourself, you can download them in the following links:

3.2. Test the Model and Visualize the Segmentation Results

First, change the session name in Config.py as the training phase. Then run:

python test_model.py

You can get the Dice and IoU scores and the visualization results.

4. Reproducibility

In our code, we carefully set the random seed and set cudnn as 'deterministic' mode to eliminate the randomness. However, there still exsist some factors which may cause different training results, e.g., the cuda version, GPU types, the number of GPUs and etc. The GPU used in our experiments is NVIDIA A40 (48G) and the cuda version is 11.2.

Especially for multi-GPU cases, the upsampling operation has big problems with randomness. See https://pytorch.org/docs/stable/notes/randomness.html for more details.

When training, we suggest to train the model twice to verify wheather the randomness is eliminated. Because we use the early stopping strategy, the final performance may change significantly due to the randomness.

Reference

Citations

If this code is helpful for your study, please cite:

@misc{wang2021uctransnet,
      title={UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer}, 
      author={Haonan Wang and Peng Cao and Jiaqi Wang and Osmar R. Zaiane},
      year={2021},
      eprint={2109.04335},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

Haonan Wang ([email protected])

Owner
Haonan Wang
Haonan Wang
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022