Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

Overview

[AAAI2022] UCTransNet

This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer" which is accepted at AAAI2022.

framework

We propose a Channel Transformer module (CTrans) and use it to replace the skip connections in original U-Net, thus we name it "U-CTrans-Net".

Requirements

Install from the requirements.txt using:

pip install -r requirements.txt

Usage

1. Data Preparation

1.1. GlaS and MoNuSeg Datasets

The original data can be downloaded in following links:

Then prepare the datasets in the following format for easy use of the code:

├── datasets
    ├── GlaS
    │   ├── Test_Folder
    │   │   ├── img
    │   │   └── labelcol
    │   ├── Train_Folder
    │   │   ├── img
    │   │   └── labelcol
    │   └── Val_Folder
    │       ├── img
    │       └── labelcol
    └── MoNuSeg
        ├── Test_Folder
        │   ├── img
        │   └── labelcol
        ├── Train_Folder
        │   ├── img
        │   └── labelcol
        └── Val_Folder
            ├── img
            └── labelcol

1.2. Synapse Dataset

The Synapse dataset we used is provided by TransUNet's authors. Please go to https://github.com/Beckschen/TransUNet/blob/main/datasets/README.md for details.

2. Training

As mentioned in the paper, we introduce two strategies to optimize UCTransNet.

The first step is to change the settings in Config.py, all the configurations including learning rate, batch size and etc. are in it.

2.1 Jointly Training

We optimize the convolution parameters in U-Net and the CTrans parameters together with a single loss. Run:

python train_model.py

2.2 Pre-training

Our method just replaces the skip connections in U-Net, so the parameters in U-Net can be used as part of pretrained weights.

By first training a classical U-Net using /nets/UNet.py then using the pretrained weights to train the UCTransNet, CTrans module can get better initial features.

This strategy can improve the convergence speed and may improve the final segmentation performance in some cases.

3. Testing

3.1. Get Pre-trained Models

Here, we provide pre-trained weights on GlaS and MoNuSeg, if you do not want to train the models by yourself, you can download them in the following links:

3.2. Test the Model and Visualize the Segmentation Results

First, change the session name in Config.py as the training phase. Then run:

python test_model.py

You can get the Dice and IoU scores and the visualization results.

4. Reproducibility

In our code, we carefully set the random seed and set cudnn as 'deterministic' mode to eliminate the randomness. However, there still exsist some factors which may cause different training results, e.g., the cuda version, GPU types, the number of GPUs and etc. The GPU used in our experiments is NVIDIA A40 (48G) and the cuda version is 11.2.

Especially for multi-GPU cases, the upsampling operation has big problems with randomness. See https://pytorch.org/docs/stable/notes/randomness.html for more details.

When training, we suggest to train the model twice to verify wheather the randomness is eliminated. Because we use the early stopping strategy, the final performance may change significantly due to the randomness.

Reference

Citations

If this code is helpful for your study, please cite:

@misc{wang2021uctransnet,
      title={UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer}, 
      author={Haonan Wang and Peng Cao and Jiaqi Wang and Osmar R. Zaiane},
      year={2021},
      eprint={2109.04335},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

Haonan Wang ([email protected])

Owner
Haonan Wang
Haonan Wang
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022