TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Overview

Simulated+Unsupervised (S+U) Learning in TensorFlow

TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial Training.

model

Requirements

Usage

To generate synthetic dataset:

  1. Run UnityEyes with changing resolution to 640x480 and Camera parameters to [0, 0, 20, 40].
  2. Move generated images and json files into data/gaze/UnityEyes.

The data directory should looks like:

data
├── gaze
│   ├── MPIIGaze
│   │   └── Data
│   │       └── Normalized
│   │           ├── p00
│   │           ├── p01
│   │           └── ...
│   └── UnityEyes # contains images of UnityEyes
│       ├── 1.jpg
│       ├── 1.json
│       ├── 2.jpg
│       ├── 2.json
│       └── ...
├── __init__.py
├── gaze_data.py
├── hand_data.py
└── utils.py

To train a model (samples will be generated in samples directory):

$ python main.py
$ tensorboard --logdir=logs --host=0.0.0.0

To refine all synthetic images with a pretrained model:

$ python main.py --is_train=False --synthetic_image_dir="./data/gaze/UnityEyes/"

Training results

Differences with the paper

  • Used Adam and Stochatstic Gradient Descent optimizer.
  • Only used 83K (14% of 1.2M used by the paper) synthetic images from UnityEyes.
  • Manually choose hyperparameters for B and lambda because those are not specified in the paper.

Experiments #1

For these synthetic images,

UnityEyes_sample

Result of lambda=1.0 with optimizer=sgd after 8,000 steps.

$ python main.py --reg_scale=1.0 --optimizer=sgd

Refined_sample_with_lambd=1.0

Result of lambda=0.5 with optimizer=sgd after 8,000 steps.

$ python main.py --reg_scale=0.5 --optimizer=sgd

Refined_sample_with_lambd=1.0

Training loss of discriminator and refiner when lambda is 1.0 (green) and 0.5 (yellow).

loss

Experiments #2

For these synthetic images,

UnityEyes_sample

Result of lambda=1.0 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=1.0 --optimizer=adam

Refined_sample_with_lambd=1.0

Result of lambda=0.5 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=0.5 --optimizer=adam

Refined_sample_with_lambd=0.5

Result of lambda=0.1 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=0.1 --optimizer=adam

Refined_sample_with_lambd=0.1

Training loss of discriminator and refiner when lambda is 1.0 (blue), 0.5 (purple) and 0.1 (green).

loss

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022