TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Overview

Simulated+Unsupervised (S+U) Learning in TensorFlow

TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial Training.

model

Requirements

Usage

To generate synthetic dataset:

  1. Run UnityEyes with changing resolution to 640x480 and Camera parameters to [0, 0, 20, 40].
  2. Move generated images and json files into data/gaze/UnityEyes.

The data directory should looks like:

data
├── gaze
│   ├── MPIIGaze
│   │   └── Data
│   │       └── Normalized
│   │           ├── p00
│   │           ├── p01
│   │           └── ...
│   └── UnityEyes # contains images of UnityEyes
│       ├── 1.jpg
│       ├── 1.json
│       ├── 2.jpg
│       ├── 2.json
│       └── ...
├── __init__.py
├── gaze_data.py
├── hand_data.py
└── utils.py

To train a model (samples will be generated in samples directory):

$ python main.py
$ tensorboard --logdir=logs --host=0.0.0.0

To refine all synthetic images with a pretrained model:

$ python main.py --is_train=False --synthetic_image_dir="./data/gaze/UnityEyes/"

Training results

Differences with the paper

  • Used Adam and Stochatstic Gradient Descent optimizer.
  • Only used 83K (14% of 1.2M used by the paper) synthetic images from UnityEyes.
  • Manually choose hyperparameters for B and lambda because those are not specified in the paper.

Experiments #1

For these synthetic images,

UnityEyes_sample

Result of lambda=1.0 with optimizer=sgd after 8,000 steps.

$ python main.py --reg_scale=1.0 --optimizer=sgd

Refined_sample_with_lambd=1.0

Result of lambda=0.5 with optimizer=sgd after 8,000 steps.

$ python main.py --reg_scale=0.5 --optimizer=sgd

Refined_sample_with_lambd=1.0

Training loss of discriminator and refiner when lambda is 1.0 (green) and 0.5 (yellow).

loss

Experiments #2

For these synthetic images,

UnityEyes_sample

Result of lambda=1.0 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=1.0 --optimizer=adam

Refined_sample_with_lambd=1.0

Result of lambda=0.5 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=0.5 --optimizer=adam

Refined_sample_with_lambd=0.5

Result of lambda=0.1 with optimizer=adam after 4,000 steps.

$ python main.py --reg_scale=0.1 --optimizer=adam

Refined_sample_with_lambd=0.1

Training loss of discriminator and refiner when lambda is 1.0 (blue), 0.5 (purple) and 0.1 (green).

loss

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022