Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

Overview

PWC

SEAM Match-RCNN

Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper

CC BY-NC-SA 4.0

Installation

Requirements:

  • Pytorch 1.5.1 or more recent, with cudatoolkit (10.2)
  • torchvision
  • tensorboard
  • cocoapi
  • OpenCV Python
  • tqdm
  • cython
  • CUDA >= 10

Step-by-step installation

# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do

conda create --name seam -y python=3
conda activate seam

pip install cython tqdm opencv-python

# follow PyTorch installation in https://pytorch.org/get-started/locally/
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

conda install tensorboard

export INSTALL_DIR=$PWD

# install pycocotools
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

# download SEAM
cd $INSTALL_DIR
git clone https://github.com/VIPS4/SEAM-Match-RCNN.git
cd SEAM-Match-RCNN
mkdir data
mkdir ckpt

unset INSTALL_DIR

Dataset

SEAM Match-RCNN has been trained and test on MovingFashion and DeepFashion2 datasets. Follow the instruction to download and extract the datasets.

We suggest to download the datasets inside the folder data.

MovingFashion

MovingFashion dataset is available for academic purposes here.

Deepfashion2

DeepFashion2 dataset is available here. You need fill in the form to get password for unzipping files.

Once the dataset will be extracted, use the reserved DeepFtoCoco.py script to convert the annotations in COCO format, specifying dataset path.

python DeepFtoCoco.py --path <dataset_root>

Training

We provide the scripts to train both Match-RCNN and SEAM Match-RCNN. Check the scripts for all the possible parameters.

Single GPU

#training of Match-RCNN
python train_matchrcnn.py --root_train <path_of_images_folder> --train_annots <json_path> --save_path <save_path> 

#training on movingfashion
python train_movingfashion.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model>


#training on multi-deepfashion2
python train_multiDF2.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model>

Multi GPU

We use internally torch.distributed.launch in order to launch multi-gpu training. This utility function from PyTorch spawns as many Python processes as the number of GPUs we want to use, and each Python process will only use a single GPU.

#training of Match-RCNN
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_matchrcnn.py --root_train <path_of_images_folder> --train_annots <json_path> --save_path <save_path>

#training on movingfashion
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_movingfashion.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model> 

#training on multi-deepfashion2
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_multiDF2.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model> 

Pre-Trained models

It is possibile to start training using the MatchRCNN pre-trained model.

[MatchRCNN] Pre-trained model on Deepfashion2 is available to download here. This model can be used to start the training at the second phase (training directly SEAM Match-RCNN).

We suggest to download the model inside the folder ckpt.

Evaluation

To evaluate the models of SEAM Match-RCNN please use the following scripts.

#evaluation on movingfashion
python evaluate_movingfashion.py --root_test <path_of_dataset_root> --test_annots <json_path> --ckpt_path <checkpoint_path>


#evaluation on multi-deepfashion2
python evaluate_multiDF2.py --root_test <path_of_dataset_root> --test_annots <json_path> --ckpt_path <checkpoint_path>

Citation

@misc{godi2021movingfashion,
      title={MovingFashion: a Benchmark for the Video-to-Shop Challenge}, 
      author={Marco Godi and Christian Joppi and Geri Skenderi and Marco Cristani},
      year={2021},
      eprint={2110.02627},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
HumaticsLAB
Video and Image Processing for Fashion
HumaticsLAB
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022