PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

Overview

AttentionHTR

PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text Recognition (STR) benchmark model [1], trained on synthetic scene text images, is used to perform transfer learning from the STR domain to HTR. Different fine-tuning approaches are investigated using the multi-writer datasets: Imgur5K [2] and IAM [3].

For more details, refer to our paper at arXiv: https://arxiv.org/abs/2201.09390

Dependencies

This work was tested with Python 3.6.8, PyTorch 1.9.0, CUDA 11.5 and CentOS Linux release 7.9.2009 (Core). Create a new virtual environment and install all the necessary Python packages:

python3 -m venv attentionhtr-env
source attentionhtr-env/bin/activate
pip install --upgrade pip
python3 -m pip install -r AttentionHTR/requirements.txt

Content

Our pre-trained models

Download our pre-trained models from here. The names of the .pth files are explained in the table below. There are 6 models in total, 3 for each character set, corresponding to the dataset they perform best on.

Character set Imgur5K IAM Both datasets
Case-insensitive AttentionHTR-Imgur5K.pth AttentionHTR-IAM.pth AttentionHTR-General.pth
Case-sensitive AttentionHTR-Imgur5K-sensitive.pth AttentionHTR-IAM-sensitive.pth AttentionHTR-General-sensitive.pth

Print the character sets using the Python string module: string.printable[:36] for the case-insensitive and string.printable[:-6] for the case-sensitive character set.

Pre-trained STR benchmark models can be downloaded from here.

Demo

  • Download the AttentionHTR-General-sensitive.pth model and place it into /model/saved_models.

  • Directory /dataset-demo contains demo images. Go to /model and create an LMDB dataset from them with python3 create_lmdb_dataset.py --inputPath ../dataset-demo/ --gtFile ../dataset-demo/gt.txt --outputPath result/dataset-demo/. Note that under Windows you may need to tune the map_size parameter manually for the lmdb.open() function.

  • Obtain predictions with python3 test.py --eval_data result/dataset-demo --Transformation TPS --FeatureExtraction ResNet --SequenceModeling BiLSTM --Prediction Attn --saved_model saved_models/AttentionHTR-General-sensitive.pth --sensitive. The last two rows in the terminal should be

    Accuracy: 90.00000000
    Norm ED: 0.04000000
    
  • Inspect predictions in /model/result/AttentionHTR-General-sensitive.pth/log_predictions_dataset-demo.txt. Columns: batch number, ground truth string, predicted string, match (0/1), running accuracy.

Use the models for fine-tuning or predictions

Partitions

Prepare the train, validation (for fine-tuning) and test (for testing and for predicting on unseen data) partitions with word-level images. For the Imgur5K and the IAM datasets you may use our scripts in /process-datasets.

LMDB datasets

When using the PyTorch implementation of the STR benchmark model [1], images need to be converted into an LMDB dataset. See this section for details. An LMDB dataset offers extremely cheap read transactions [4]. Alternatively, see this demo that uses raw images.

Predictions and fine-tuning

The pre-trained models can be used for predictions or fine-tuning on additional datasets using an implementation in /model, which is a modified version of the official PyTorch implementation of the STR benchmark [1]. Use test.py for predictions and train.py for fine-tuning. In both cases use the following arguments:

  • --Transformation TPS --FeatureExtraction ResNet --SequenceModeling BiLSTM --Prediction Attn to define architecture.
  • --saved_model to provide a path to a pre-trained model. In case of train.py it will be used as a starting point in fine-tuning and in the case of test.py it will be used for predictions.
  • --sensitive for the case-sensitive character set. No such argument for the case-insensitive character set.

Specifically for fine-tuning use:

  • --FT to signal that model parameters must be initialized from a pre-trained model in --saved_model and not randomly.
  • --train_data and --valid_data to provide paths to training and validation data, respectively.
  • --select_data "/" and --batch_ratio 1 to use all data. Can be used to define stratified batches.
  • --manualSeed to assign an integer identifyer for the resulting model. The original purpose of this argument is to set a random seed.
  • --patience to set the number of epochs to wait for the validation loss to decrease below the last minimum.

Specifically for predicting use:

  • --eval_data to provide a path to evaluation data.

Note that test.py outputs its logs and a copy of the evaluated model into /result.

All other arguments are described inside the scripts. Original instructions for using the scripts in /model are available here.

For example, to fine-tune one of our case-sensitive models on an additional dataset:

CUDA_VISIBLE_DEVICES=3 python3 train.py \
--train_data my_train_data \
--valid_data my_val_data \
--select_data "/" \
--batch_ratio 1 \
--FT \
--manualSeed 1
--Transformation TPS \
--FeatureExtraction ResNet \
--SequenceModeling BiLSTM \
--Prediction Attn \
--saved_model saved_models/AttentionHTR-General-sensitive.pth \
--sensitive

To use the same model for predictions:

CUDA_VISIBLE_DEVICES=0 python3 test.py \
--eval_data my_unseen_data \
--Transformation TPS \
--FeatureExtraction ResNet \
--SequenceModeling BiLSTM \
--Prediction Attn \
--saved_model saved_models/AttentionHTR-General.pth \
--sensitive

Acknowledgements

  • Our implementation is based on Clova AI's deep text recognition benchmark.
  • The authors would like to thank Facebook Research for the Imgur5K dataset.
  • The computations were performed through resources provided by the Swedish National Infrastructure for Computing (SNIC) at Chalmers Centre for Computational Science and Engineering (C3SE).

References

[1]: Baek, J. et al. (2019). What is wrong with scene text recognition model comparisons? dataset and model analysis. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 4715-4723). https://arxiv.org/abs/1904.01906

[2]: Krishnan, P. et al. (2021). TextStyleBrush: Transfer of Text Aesthetics from a Single Example. arXiv preprint arXiv:2106.08385. https://arxiv.org/abs/2106.08385

[3]: Marti, U. V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. https://doi.org/10.1007/s100320200071

[4]: Lightning Memory-Mapped Database. Homepage: https://www.symas.com/lmdb

Citation

@article{kass2022attentionhtr,
  title={AttentionHTR: Handwritten Text Recognition Based on Attention Encoder-Decoder Networks},
  author={Kass, D. and Vats, E.},
  journal={arXiv preprint arXiv:2201.09390},
  year={2022}
}

Contact

Dmitrijs Kass ([email protected])

Ekta Vats ([email protected])

Owner
Dmitrijs Kass
Data Science student at Uppsala University
Dmitrijs Kass
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022