ML for NLP and Computer Vision.

Overview

Katana ML Sparrow

PyPI - Python GitHub Stars GitHub Issues Current Version

Sparrow

About

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Primary focus:

  • NLP
  • Computer Vision

Sparrow containers are located in folder - services

Sparrow is in early development stage.

Author

Katana ML, Andrej Baranovskij

Update Sparrow from base Skipper MLOps infra GitHub

First time:

git remote add template https://github.com/katanaml/katana-skipper.git

Later:

git fetch template
git checkout master
git merge template/master

Enjoy!


Katana ML Skipper

PyPI - Python GitHub Stars GitHub Issues Current Version

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable with any microservices. Enjoy!

Skipper

Engine and Communication parts are generic and can be reused. A group of ML services is provided for sample purposes. You should replace a group of services with your own. The current group of ML services works with Boston Housing data. Data service is fetching Boston Housing data and converts it to the format suitable for TensorFlow model training. Training service builds TensorFlow model. Serving service is scaled to 2 instances and it serves prediction requests.

One of the services, helloservice, shows how to use JavaScript based microservice with Skipper. This allows to use containers with various programming languages - Python, JavaScript, Go, Rust, Java. You can run ML services with Python frameworks, Node.js or any other choice.

Author

Katana ML, Andrej Baranovskij

Instructions

Start/Stop

Docker Compose

Start:

docker-compose up --build -d

This will start Skipper services and RabbitMQ.

Stop:

docker-compose down

Web API FastAPI endpoint:

http://127.0.0.1:8080/api/v1/skipper/tasks/docs

Kubernetes

NGINX Ingress Controller:

If you are using local Kubernetes setup, install NGINX Ingress Controller

Build Docker images:

docker-compose -f docker-compose-kubernetes.yml build

Setup Kubernetes services:

./kubectl-setup.sh

Skipper API endpoint published through NGINX Ingress (you can setup your own host in /etc/hosts):

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs

Check NGINX Ingress Controller pod name:

kubectl get pods -n ingress-nginx

Sample response, copy the name of 'Running' pod:

NAME                                       READY   STATUS      RESTARTS   AGE
ingress-nginx-admission-create-dhtcm       0/1     Completed   0          14m
ingress-nginx-admission-patch-x8zvw        0/1     Completed   0          14m
ingress-nginx-controller-fd7bb8d66-tnb9t   1/1     Running     0          14m

NGINX Ingress Controller logs:

kubectl logs -n ingress-nginx -f 
   

   

Skipper API logs:

kubectl logs -n katana-skipper -f -l app=skipper-api

Remove Kubernetes services:

./kubectl-remove.sh

Components

  • api - Web API implementation
  • workflow - workflow logic
  • services - a set of sample microservices, you should replace this with your own services. Update references in docker-compose.yml
  • rabbitmq - service for RabbitMQ broker
  • skipper-lib - reusable Python library to streamline event communication through RabbitMQ
  • logger - logger service

API URLs

  • Web API:
http://127.0.0.1:8080/api/v1/skipper/tasks/docs

If running on local Kubernetes with Docker Desktop:

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs
  • RabbitMQ:
http://localhost:15672/ (skipper/welcome1)

If running on local Kubernets, make sure port forwarding is enabled:

kubectl -n rabbits port-forward rabbitmq-0 15672:15672

Skipper Library on PyPI

  • PyPI - skipper-lib is on PyPI

Cloud Deployment Guides

  • OKE - deployment guide for Oracle Container Engine for Kubernetes

  • GKE - deployment guide for Google Kubernetes Engine

Usage

You can use Skipper engine to run Web API, workflow and communicate with a group of ML microservices implemented under services package.

Skipper can be deployed to any Cloud vendor with Kubernetes or Docker support. You can scale Skipper runtime on Cloud using Kubernetes commands.

IMAGE ALT TEXT

IMAGE ALT TEXT

License

Licensed under the Apache License, Version 2.0. Copyright 2020-2021 Katana ML, Andrej Baranovskij. Copy of the license.

Owner
Katana ML
Machine Learning for Business Automation
Katana ML
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022