Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

Overview

Python 3.6

GUI for iVOS(interactive VOS) and GIS (Guided iVOS)

explain_qwerty GUI Implementation of

CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps"

ECCV2020 paper "Interactive Video Object Segmentation Using Global and Local Transfer Modules"

Githubs:
CVPR2021 / ECCV2020

Project Pages:
CVPR2021 / ECCV2020

Codes in this github:

  1. Real-world GUI evaluation on DAVIS2017 based on the DAVIS framework
  2. GUI for other videos

Prerequisite

  • cuda 11.0
  • python 3.6
  • pytorch 1.6.0
  • davisinteractive 1.0.4
  • numpy, cv2, PtQt5, and other general libraries of python3

Directory Structure

  • root/apps: QWidget apps.

  • root/checkpoints: save our checkpoints (pth extensions) here.

  • root/dataset_torch: pytorch datasets.

  • root/libs: library of utility files.

  • root/model_CVPR2021 : networks and GUI models for CVPR2021

  • root/model_ECCV2020 : networks and GUI models for ECCV2020

    • detailed explanations (including building correlation package) on [Github:ECCV2020]
  • root/eval_GIS_RS1.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/eval_GIS_RS4.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/eval_IVOS.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/IVOS_demo_customvideo.py : GUI for custom videos

Instruction

To run

  1. Edit eval_GIS_RS1.py``eval_GIS_RS4.py``eval_IVOS.py``IVOS_demo_customvideo.py to set the directory of your DAVIS2017 dataset and other configurations.
  2. Download our parameters and place the file as root/checkpoints/GIS-ckpt_standard.pth.
  3. Run eval_GIS_RS1.py``eval_GIS_RS4.py``eval_IVOS.py for real-world GUI evaluation on DAVIS2017 or
  4. Run IVOS_demo_customvideo.py to apply our method on the other videos

To use

explain_qwerty

Left click for the target object and right click for the background.

  1. Select any frame to interact by dragging the slidder under the main image
  2. Give interaction
  3. Run VOS
  4. Find worst frame (if GIS, a candidate frame-RS1 or frames-RS4 are given) and reinteract.
  5. Iterate until you get satisfied with VOS results.
  6. By selecting satisfied button, your evaluation result (consumed time and frames) will be recorded on root/results.

Reference

Please cite our paper if the implementations are useful in your work:

@Inproceedings{
Yuk2021GIS,
title={Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps},
author={Yuk Heo and Yeong Jun Koh and Chang-Su Kim},
booktitle={CVPR},
year={2021},
url={https://openaccess.thecvf.com/content/CVPR2021/papers/Heo_Guided_Interactive_Video_Object_Segmentation_Using_Reliability-Based_Attention_Maps_CVPR_2021_paper.pdf}
}
@Inproceedings{
Yuk2020IVOS,
title={Interactive Video Object Segmentation Using Global and Local Transfer Modules},
author={Yuk Heo and Yeong Jun Koh and Chang-Su Kim},
booktitle={ECCV},
year={2020},
url={https://openreview.net/forum?id=bo_lWt_aA}
}

Our real-world evaluation demo is based on the GUI of IPNet:

@Inproceedings{
Oh2019IVOS,
title={Fast User-Guided Video Object Segmentation by Interaction-and-Propagation Networks},
author={Seoung Wug Oh and Joon-Young Lee and Seon Joo Kim},
booktitle={CVPR},
year={2019},
url={https://openaccess.thecvf.com/content_ICCV_2019/papers/Oh_Video_Object_Segmentation_Using_Space-Time_Memory_Networks_ICCV_2019_paper.pdf}
}
Owner
Yuk Heo
Computer Vision Engineer, Student of MCL at Korea University. Contact me via [e
Yuk Heo
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023