Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

Overview

Python 3.6

GUI for iVOS(interactive VOS) and GIS (Guided iVOS)

explain_qwerty GUI Implementation of

CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps"

ECCV2020 paper "Interactive Video Object Segmentation Using Global and Local Transfer Modules"

Githubs:
CVPR2021 / ECCV2020

Project Pages:
CVPR2021 / ECCV2020

Codes in this github:

  1. Real-world GUI evaluation on DAVIS2017 based on the DAVIS framework
  2. GUI for other videos

Prerequisite

  • cuda 11.0
  • python 3.6
  • pytorch 1.6.0
  • davisinteractive 1.0.4
  • numpy, cv2, PtQt5, and other general libraries of python3

Directory Structure

  • root/apps: QWidget apps.

  • root/checkpoints: save our checkpoints (pth extensions) here.

  • root/dataset_torch: pytorch datasets.

  • root/libs: library of utility files.

  • root/model_CVPR2021 : networks and GUI models for CVPR2021

  • root/model_ECCV2020 : networks and GUI models for ECCV2020

    • detailed explanations (including building correlation package) on [Github:ECCV2020]
  • root/eval_GIS_RS1.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/eval_GIS_RS4.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/eval_IVOS.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/IVOS_demo_customvideo.py : GUI for custom videos

Instruction

To run

  1. Edit eval_GIS_RS1.py``eval_GIS_RS4.py``eval_IVOS.py``IVOS_demo_customvideo.py to set the directory of your DAVIS2017 dataset and other configurations.
  2. Download our parameters and place the file as root/checkpoints/GIS-ckpt_standard.pth.
  3. Run eval_GIS_RS1.py``eval_GIS_RS4.py``eval_IVOS.py for real-world GUI evaluation on DAVIS2017 or
  4. Run IVOS_demo_customvideo.py to apply our method on the other videos

To use

explain_qwerty

Left click for the target object and right click for the background.

  1. Select any frame to interact by dragging the slidder under the main image
  2. Give interaction
  3. Run VOS
  4. Find worst frame (if GIS, a candidate frame-RS1 or frames-RS4 are given) and reinteract.
  5. Iterate until you get satisfied with VOS results.
  6. By selecting satisfied button, your evaluation result (consumed time and frames) will be recorded on root/results.

Reference

Please cite our paper if the implementations are useful in your work:

@Inproceedings{
Yuk2021GIS,
title={Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps},
author={Yuk Heo and Yeong Jun Koh and Chang-Su Kim},
booktitle={CVPR},
year={2021},
url={https://openaccess.thecvf.com/content/CVPR2021/papers/Heo_Guided_Interactive_Video_Object_Segmentation_Using_Reliability-Based_Attention_Maps_CVPR_2021_paper.pdf}
}
@Inproceedings{
Yuk2020IVOS,
title={Interactive Video Object Segmentation Using Global and Local Transfer Modules},
author={Yuk Heo and Yeong Jun Koh and Chang-Su Kim},
booktitle={ECCV},
year={2020},
url={https://openreview.net/forum?id=bo_lWt_aA}
}

Our real-world evaluation demo is based on the GUI of IPNet:

@Inproceedings{
Oh2019IVOS,
title={Fast User-Guided Video Object Segmentation by Interaction-and-Propagation Networks},
author={Seoung Wug Oh and Joon-Young Lee and Seon Joo Kim},
booktitle={CVPR},
year={2019},
url={https://openaccess.thecvf.com/content_ICCV_2019/papers/Oh_Video_Object_Segmentation_Using_Space-Time_Memory_Networks_ICCV_2019_paper.pdf}
}
Owner
Yuk Heo
Computer Vision Engineer, Student of MCL at Korea University. Contact me via [e
Yuk Heo
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023