DISTIL: Deep dIverSified inTeractIve Learning.

Overview


            

GitHub Decile Documentation GitHub Stars GitHub Forks

Cut down your labeling cost and time by 3x-5x!

What is DISTIL?


            

DISTIL is an active learning toolkit that implements a number of state-of-the-art active learning strategies with a particular focus for active learning in the deep learning setting. DISTIL is built on PyTorch and decouples the training loop from the active learning algorithm, thereby providing flexibility to the user by allowing them to control the training procedure and model. It allows users to incorporate new active learning algorithms easily with minimal changes to their existing code. DISTIL also provides support for incorporating active learning with your custom dataset and allows you to experiment on well-known datasets. We are continuously incorporating newer and better active learning selection strategies into DISTIL, and we plan to expand the scope of the supported active learning algorithms to settings beyond the currently supported supervised classification setting.

Key Features of DISTIL

  • Decouples the active learning strategy from the training loop, allowing users to modify the training and/or the active learning strategy
  • Implements faster and more efficient versions of several active learning strategies
  • Contains most state-of-the-art active learning algorithms
  • Allows running basic experiments with just one command
  • Presents interface to various active learning strategies through only a couple lines of code
  • Requires only minimal changes to the configuration files to run your own experiments
  • Achieves higher test accuracies with less amount of training data, admitting a huge reduction in labeling cost and time
  • Requires minimal change to add it to existing training structures
  • Contains recipes, tutorials, and benchmarks for all active learning algorithms on many deep learning datasets

Starting with DISTIL

DISTIL can be installed using the following means:

From Git Repository

git clone https://github.com/decile-team/distil.git
cd distil
pip install -r requirements/requirements.txt

Pip Installation

pip install decile-distil

First Steps

To better understand DISTIL's functionality, we have provided example Jupyter notebooks in the tutorials folder, which can be easily executed by using Google Colab. We also provide a simple AL training loop that runs experiments using a provided configuration file. To run this loop, do the following from the base folder:

python train.py --config_path=/content/distil/configs/config_svhn_resnet_randomsampling.json

You can use the default configurations that we have provided in the configs folder, or you can make a custom configuration. For making your custom configuration file for training, please refer to Distil Configuration File Documentation.

Some of the algorithms currently implemented in DISTIL include the following:

To learn more on different active learning algorithms, check out the Active Learning Strategies Survey Blog

Documentation

Learn more about DISTIL by reading our documentation.

Mailing List

To receive updates about DISTIL and to be a part of the community, join the Decile_DISTIL_Dev group.

https://groups.google.com/forum/#!forum/Decile_DISTIL_Dev/join 

Acknowledgment

This library takes inspiration, builds upon, and uses pieces of code from several open source codebases. These include Kuan-Hao Huang's deep active learning repository, Jordan Ash's Badge repository, and Andreas Kirsch's and Joost van Amersfoort's BatchBALD repository. Also, DISTIL uses submodlib for submodular optimization.

Team

DISTIL is created and maintained by Nathan Beck, Suraj Kothawade, Durga Sivasubramanian, Apurva Dani, Rishabh Iyer, and Ganesh Ramakrishnan. We look forward to have DISTIL more community driven. Please use it and contribute to it for your active learning research, and feel free to use it for your commercial projects. We will add the major contributors here.

Resources

Youtube Tutorials on DISTIL:

Blog Articles

Publications

[1] Settles, Burr. Active learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, 2009.

[2] Wang, Dan, and Yi Shang. "A new active labeling method for deep learning." 2014 International joint conference on neural networks (IJCNN). IEEE, 2014

[3] Kai Wei, Rishabh Iyer, Jeff Bilmes, Submodularity in data subset selection and active learning, International Conference on Machine Learning (ICML) 2015

[4] Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch active learning by diverse, uncertain gradient lower bounds. CoRR, 2019. URL: http://arxiv.org/abs/1906.03671, arXiv:1906.03671.

[5] Sener, Ozan, and Silvio Savarese. "Active learning for convolutional neural networks: A core-set approach." ICLR 2018.

[6] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer, GLISTER: Generalization based Data Subset Selection for Efficient and Robust Learning, 35th AAAI Conference on Artificial Intelligence, AAAI 2021

[7] Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Mahadev, Khoshrav Doctor, and Ganesh Ramakrishnan, Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision, 7th IEEE Winter Conference on Applications of Computer Vision (WACV), 2019 Hawaii, USA

[8] Wei, Kai, et al. "Submodular subset selection for large-scale speech training data." 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014.

[9] Ducoffe, Melanie, and Frederic Precioso. "Adversarial active learning for deep networks: a margin based approach." arXiv preprint arXiv:1802.09841 (2018).

[10] Gal, Yarin, Riashat Islam, and Zoubin Ghahramani. "Deep bayesian active learning with image data." International Conference on Machine Learning. PMLR, 2017.

[11] Suraj Kothawade, Nathan Beck, Krishnateja Killamsetty, and Rishabh Iyer, “SIMILAR: Submodular Information Measures based Active Learning in Realistic Scenarios,” To Appear In Neural Information Processing Systems, NeurIPS 2021.

Comments
  • Different results

    Different results

    Hello authors, It's great that you publish the source code, but the default hyper-parameters in config_cifar10_resnet_badge.json can not get similar accuracy in your project about badge strategy, so could you please share the hyper-params to produce the graph in README.

    opened by chipsh 2
  • Eval Mode in select()

    Eval Mode in select()

    SMI, SCMI, and SCG need to have self.model.eval() in their select() methods. Without it, the embedding computation will not necessarily be the same for similar points, which may cause performance degradation.

    opened by nab170130 1
  • Update README

    Update README

    • Add the effective evaluation paper
    • Add links to the SIMILAR and effective eval papers
    • Remove the results right now from the main readme and rather link to the benchmark folders for each case. Each folder will have the detailed results for the corresponding case.
    opened by rishabhk108 1
  • Update Interface for Scalability and Add New Content

    Update Interface for Scalability and Add New Content

    This merge request replaces the old interface used in DISTIL that requires numpy arrays. To better adapt to larger (and otherwise different) datasets, the new strategies now take torch.utils.data.Dataset objects. This simplifies dataset management and trims the need for many added utilities.

    Furthermore, submodular optimization has been changed to use submodlib, which is closely tied to DECILE. As a result, much of the utilities revolving around submodular optimization and disparity (dispersion) functions has been pruned as well. Any missing functionality should be implemented as part of submodlib.

    Lastly, this merge request adds new documentation, updated examples, and the complete updated benchmark profile of the Effective Evaluation of Deep Active Learning on Image Classification Tasks.

    opened by nab170130 0
  • Submodlib integration - Multiple changes and feature additions

    Submodlib integration - Multiple changes and feature additions

    1. Main change: Pre-compute kernel before SIM function instantiations
    2. Feature addition: Facilitate feature extraction from any layer in the neural network
    3. Multiple other changes in commit messages
    opened by surajkothawade 0
  • Doc Index Plots and Utils Docstrings

    Doc Index Plots and Utils Docstrings

    Added plots to the index page of the documentation. Added docstrings to utils files, but did not specify autodoc construction to be included in documentation.

    opened by nab170130 0
  • Grammar-check readme, fix file names and imports in all files

    Grammar-check readme, fix file names and imports in all files

    Grammar-checked the readme file. Fixed the file names so that all are lowercase, matching convention. Fixed imports in ALL files. Removed import block in init.py file in active_learning_strategies and fixed imports in all relevant files. Each file was tested: All attempted imports worked, and every example / testing script and notebook worked.

    Note: THE GOOGLE COLAB NOTEBOOKS THAT ARE LINKED IN THE README NEED TO HAVE THE CHANGES IN THE IMPORT STATEMENTS PRESENT IN THE NOTEBOOKS FOLDER. MAKE SURE TO INCORPORATE THOSE CHANGES WHEN MERGING.

    opened by nab170130 0
  • Merge Grammar-Checked README and Fixed File Names

    Merge Grammar-Checked README and Fixed File Names

    Grammar-checked the README present from the commit on the main branch that this current branch originated. Fixed the file names such that all are lower case. Fixed the affected import statements. Note: Any notebook dependent on everything within the distil folder needs to have their import statements checked / fixed!

    opened by nab170130 0
  • Device fix and import trimming

    Device fix and import trimming

    Added optional device parameter to each learning strategy and otherwise ensured that the specified device was being used in all locations where a torch object was being moved. Further trimmed imported but never used libraries.

    opened by nab170130 0
  • Used with Custom Datasets

    Used with Custom Datasets

    Though it says that distil coud be used with custom datasets there are no tutorials to support this claim and I have not been able to implement any kaggle datasets either. Please include instructions for if we want to use any dataset separate from the pre-defined

    opened by svpowell 0
  • Is there code to draw the diagram under the experiment_plot folder

    Is there code to draw the diagram under the experiment_plot folder

    Hi, Thank you very much for the toolkit, I want to plot the experimental comparison result, but I don't konw how to plot the same effect as the paper, so can you provide the code for this plot? Thanks.

    opened by InstantWindy 0
  • Semi-Supervised Learning

    Semi-Supervised Learning

    Hello!

    Is it possible to perform Active-Learning with a combination of SSL methods such as Virtual Adversarial Training (VAT), Entropy Minimization (EntMin), etc?

    I believe that this would be the major benefit of using DL for active learning. Otherwise, one can use an easier model to train & tune after each iteration.

    Do you also think Extreme Learning Machine could be useful as a one-shot learning method to speed up the active-learning iterations with your library?

    opened by kayuksel 0
Releases(0.2.0)
Owner
decile-team
DECILE: Data EffiCient machIne LEarning
decile-team
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022