Statistical and Algorithmic Investing Strategies for Everyone

Overview

Eiten - Algorithmic Investing Strategies for Everyone

Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic investing strategies such as Eigen Portfolios, Minimum Variance Portfolios, Maximum Sharpe Ratio Portfolios, and Genetic Algorithms based Portfolios. It allows you to build your own portfolios with your own set of stocks that can beat the market. The rigorous testing framework included in Eiten enables you to have confidence in your portfolios.

If you are looking to discuss these tools in depth and talk about more tools that we are working on, please feel free to join our Discord channel where we have a bunch of more tools too.

Files Description

Path Description
eiten Main folder.
└  figures Figures for this github repositories.
└  stocks Folder to keep your stock lists that you want to use to create your portfolios.
└  strategies A bunch of strategies implemented in python.
backtester.py Backtesting module that both backtests and forward tests all portfolios.
data_loader.py Module for loading data from yahoo finance.
portfolio_manager.py Main file that takes in a bunch of arguments and generates several portfolios for you.
simulator.py Simulator that uses historical returns and monte carlo to simulate future prices for the portfolios.
strategy_manager.py Manages the strategies implemented in the 'strategies' folder.

Required Packages

You will need to install the following package to train and test the models.

You can install all packages using the following command. Please note that the script was written using python3.

pip install -r requirements.txt

Build your portfolios

Let us see how we can use all the strategies given in the toolkit to build our portfolios. The first thing you need to do is modify the stocks.txt file in the stocks folder and add the stocks of your choice. It is recommended to keep the list small i.e anywhere between 5 to 50 stocks should be fine. We have already put a small stocks list containing a bunch of tech stocks like AAPL, MSFT, TSLA etc. Let us build our portfolios now. This is the main command that you need to run.

python portfolio_manager.py --is_test 1 --future_bars 90 --data_granularity_minutes 3600 --history_to_use all --apply_noise_filtering 1 --market_index QQQ --only_long 1 --eigen_portfolio_number 3 --stocks_file_path stocks/stocks.txt

This command will use last 5 years of daily data excluding the last 90 days and build several portfolios for you. Based on those portfolios, it will then test them on the out of sample data of 90 days and show you the performance of each portfolio. Finally, it will also compare the performance with your choice of market index which is QQQ here. Let's dive into each of the parameters in detail.

  • is_test: The value determined if the program is going to keep some separate data for future testing. When this is enabled, the value of future_bars should be larger than 5.
  • future_bars: These are the bars that the tool will exclude during portfolio building and will forward test the portfolios on the excluded set. This is also called out of sample data.
  • data_granularity_minutes: How much granular data do you want to use to build your portfolios. For long term portfolios, you should use daily data but for short term, you can use hourly or minute level data. The possible values here are 3600, 60, 30, 15, 5, 1. 3600 means daily.
  • history_to_use: Whether to use a specific number of historical bars or use everything that we receive from yahoo finance. For minute level data, we only receive up to one month of historical data. For daily, we receive 5 years worth of historical data. If you want to use all available data, the value should be all but if you want to use smaller history, you can set it to an integer value e.g 100 which will only use the last 100 bars to build the portfolios.
  • apply_noise_filtering: This uses random matrix theory to filter out the covariance matrix from randomness thus yielding better portfolios. A value of 1 will enable it and 0 will disable it.
  • market_index: Which index do you want to use to compare your portfolios. This should mostly be SPY but since we analyzed tech stocks, we used QQQ.
  • only_long: Whether to use long only portfolio or enable short selling as well. Long only portfolios have shown to have better performance using algorithmic techniques.
  • eigen_portfolio_number: Which eigen portfolio to use. Any value between 1-5 should work. The first eigen portfolio (1) represents the market portfolio and should act just like the underlying index such as SPY or QQQ. The second one is orthogonal and uncorrelated to the market and poses the greatest risk and reward. The following ones have reduced risk and reward. Read more on eigen-portfolios.
  • stocks_file_path: File that contains the list of stocks that you want to use to build your portfolio.

Some Portfolio Building Examples

Here are a few examples for building different types of portfolios.

  • Both long and short portfolios by analyzing last 90 days data and keeping the last 30 days as testing data. This will give us 60 days of portfolio construction data and 30 days of testing.
python portfolio_manager.py --is_test 1 --future_bars 30 --data_granularity_minutes 3600 --history_to_use 90 --apply_noise_filtering 1 --market_index QQQ --only_long 0 --eigen_portfolio_number 3 --stocks_file_path stocks/stocks.txt
  • Only long portfolio on 60 minute bars of the last 30 days. No future testing. Compare the results with SPY index instead of QQQ.
python portfolio_manager.py --is_test 0 --future_bars 0 --data_granularity_minutes 60 --history_to_use all --apply_noise_filtering 1 --market_index SPY --only_long 1 --eigen_portfolio_number 3 --stocks_file_path stocks/stocks.txt
  • Do not apply noise filtering on the covariance matrix. Use the first eigen portfolio (market portfolio) and compare with SQQQ,
python portfolio_manager.py --is_test 1 --future_bars 90 --data_granularity_minutes 3600 --history_to_use all --apply_noise_filtering 0 --market_index SQQQ --only_long 1 --eigen_portfolio_number 1 --stocks_file_path stocks/stocks.txt

Portfolio Strategies

Four different portfolio strategies are currently supported by the toolkit.

  1. Eigen Portfolios
    1. These portfolios are orthogonal and uncorrelated to the market in general thus yielding high reward and alpha. However, since they are uncorrelated to the market, they can also provide great risk. The first eigen portfolio is considered to be a market portfolio which is often ignored. The second one is uncorrelated to the others and provides the highest risk and reward. As we go down the numbering, the risk as well as the reward are reduced.
  2. Minimum Variance Portfolio (MVP)
    1. MVP tries to minimize the variance of the portfolio. These portfolios are lowest risk and reward.
  3. Maximum Sharpe Ratio Portfolio (MSR)
    1. MSR solves an optimization problem that tries to maximize the sharpe ratio of the portfolio. It uses past returns during the optimization process which means if past returns are not the same as future returns, the results can vary in future.
  4. Genetic Algorithm (GA) based Portfolio
    1. This is our own implementation of a GA based portfolio that again tries to maximize the sharpe ratio but in a slightly more robust way. This usually provides more robust portfolios than the others.

When you run the command above, our tool will generate portfolios from all these strategies and give them to you. Let us look at some resulting portfolios.

Resulting Portfolios

For the purpose these results, we will use the 9 stocks in the stocks/stocks.txt file. When we run the above command, we first get the portfolio weights for all four strategies. For testing purposes, the above command used last five years of daily data up till April 29th. The remaining data for this year was used for forward testing i.e the portfolio strategies had no access to it when building the portfolios.

What if my portfolio needs different stocks?: All you need to do is change the stocks in the stocks.txt file and run the tool again. Here is the final command again that we run in order to get our portfolios:

python portfolio_manager.py --is_test 1 --future_bars 90 --data_granularity_minutes 3600 --history_to_use all --apply_noise_filtering 1 --market_index QQQ --only_long 1 --eigen_portfolio_number 3 --stocks_file_path stocks/stocks.txt

Portfolio Weights

We can see that the eigen portfolio is giving a large weight to TSLA while the others are dividing their weights more uniformly. An interesting phenomena happening here is the hedging with SQQQ that all the strategies have learned automatically. Every tool is assigning some positive weight to SQQQ while also assigning positive weights to other stocks which indicates that the strategies are automatically trying to hedge the portfolios from risk. Obviously this is not perfect, but just the fact that it's happening is fascinating. Let us look at the backtest results on the last five years prior to April 29, 2020.

Backtest Results

The backtests look pretty encouraging. The black dotted line is the market index i.e QQQ. Other lines are the strategies. Our custom genetic algorithm implementation seems to have the best backtest results because it's an advanced version of other strategies. The eigen portfolio that weighed TSLA the most have the most volatility but its profits are also very high. Finally, as expected, the MVP has the minimum variance and ultimately the least profits. However, since the variance is extremely low, it is a good portfolio for those who want to stay safe. The most interesting part comes next, let us look at the forward or future test results for these portfolios.

Forward Test Results

These results are from April 29th, 2020 to September 4th, 2020. The eigen portfolio performed the best but it also had a lot of volatility. Moreover, most of those returns are due to TSLA rocketing in the last few months. After that, our GA algorithm worked quite effectively as it beat the market index. Again, as expected, the MVP had the lowest risk and reward and slowly went up in 4-5 months. This shows the effectiveness and power of these algorithmic portfolio optimization strategies where we've developed different portfolios for different kinds of risk and reward profiles.

Conclusion and Discussion

We are happy to share this toolkit with the trading community and hope that people will like and contribute to it. As is the case with everything in trading, these strategies are not perfect but they are based on rigorous theory and some great empirical results. Please take care when trading with these strategies and always manage your risk. The above results were not cherry picked but the market has been highly bullish in the last few months which has led to the strong results shown above. We would love for the community to try out different strategies and share them with us.

Special Thanks

Special thanks to Scott Rome's blog. The eigen portfolios and minimum variance portfolio concepts came from his blog posts. The code for filtering eigen values of the covariance matrix was also mostly obtained from one of his posts.

License

License: GPL v3

A product by Tradytics

Copyright (c) 2020-present, Tradytics.com

Owner
Tradytics
Artificial Intelligence driven Trading Tools
Tradytics
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023