Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

Related tags

Deep LearningTGraM
Overview

TGraM

Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling,
Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu

Abstract

Recently, satellite video has become an emerging means of earth observation, providing the possibility of tracking moving objects. However, the existing multi-object trackers are commonly designed for natural scenes without considering the characteristics of remotely sensed data. In addition, most trackers are composed of two independent stages of detection and re-identification (ReID), which means that they cannot be mutually promoted. To this end, we propose an end-to-end online framework, which is called TGraM, for multi-object tracking in satellite videos. It models multi-object tracking as a graph information reasoning procedure from the multi-task learning perspective. Specifically, a graph-based spatiotemporal reasoning module is presented to mine the potential high-order correlations between video frames. Furthermore, considering the inconsistency of optimization objectives between detection and ReID, a multi-task gradient adversarial learning strategy is designed to regularize each task-specific network. Additionally, aiming at the data scarcity in this field, a large-scale and high-resolution Jilin1 satellite video dataset for multi-object tracking (AIR-MOT) is built for the experiments. Compared with state-of-the-art multi-object trackers, TGraM achieves efficient collaborative learning between detection and ReID, improving the tracking accuracy by 1.2 MOTA.

Paper

Please cite our paper if you find the code or dataset useful for your research.

@ARTICLE{He-TGRS-TGraM-2022,
  author={Q. {He} and X. {Sun} and Z. {Yan} and B. {Li} and K. {Fu}},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling}, 
  year={2022},
  volume={},
  number={},
  pages={1-14},
  doi={}}

Installation

  • Clone this repo, and we'll call the directory that you cloned as ${TGRAM_ROOT}
  • Install dependencies. We use python 3.7 and pytorch >= 1.2.0
conda create -n TGraM
conda activate TGraM
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
cd ${TGRAM_ROOT}
pip install -r requirements.txt
  • We use DCNv2 in our backbone network and more details can be found in their repo.
git clone https://github.com/CharlesShang/DCNv2
cd DCNv2
./make.sh
  • In order to run the code for demos, you also need to install ffmpeg.

Data preparation

AIR-MOT
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)

Then, you can change the seq_root and label_root in src/gen_labels_airmot.py and run:

cd src
python gen_labels_airmot.py

to generate the labels of AIR-MOT.

Training

  • Download the training data
  • Change the dataset root directory 'root' in src/lib/cfg/data.json and 'data_dir' in src/lib/opts.py
  • Train on AIR-MOT:
sh experiments/airmot.sh

Tracking

  • The default settings run tracking on the testing dataset from AIR-MOT. Using the trained model, you can run:
cd src
CUDA_VISIBLE_DEVICES=0 python track_half_air.py mot --load_model ../exp/airmot/210529_airmot_tgrammbseg/model_last.pth --conf_thres 0.4 --val_mot17 True --gpus 5 --data_dir '/workspace/tgram/src/data/' --arch tgrammbseg  --num_frames 3 --num_workers 2 --output_dir '/workspace/tgram/result/' --save_images --down_ratio 4 --exp_name 210526_tgrammbseg_cam

to obtain the tracking results. You can also set save_images=True in src/track.py to save the visualization results of each frame.

Train on custom dataset

You can train TGraM on custom dataset by following several steps bellow:

  1. Generate one txt label file for one image. Each line of the txt label file represents one object. The format of the line is: "class id x_center/img_width y_center/img_height w/img_width h/img_height". You can modify src/gen_labels_16.py to generate label files for your custom dataset.
  2. Generate files containing image paths. The example files are in src/data/. Some similar code can be found in src/gen_labels_crowd.py
  3. Create a json file for your custom dataset in src/lib/cfg/. You need to specify the "root" and "train" keys in the json file. You can find some examples in src/lib/cfg/.
  4. Add --data_cfg '../src/lib/cfg/your_dataset.json' when training.

Acknowledgement

A large part of the code is borrowed from Zhongdao/Towards-Realtime-MOT and xingyizhou/CenterNet. Thanks for their wonderful works.

Owner
Qibin He
Qibin He
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023