PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

Related tags

Deep LearningSGPA
Overview

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

This is the PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation by Kai Chen and Qi Dou.

intro

Abstract

Category-level 6D object pose estimation aims to predict the position and orientation for unseen objects, which plays a pillar role in many scenarios such as robotics and augmented reality. The significant intra-class variation is the bottleneck challenge in this task yet remains unsolved so far. In this paper, we take advantage of category prior to overcome this problem by innovating a structure-guided prior adaptation scheme to accurately estimate 6D pose for individual objects. Different from existing prior based methods, given one object and its corresponding category prior, we propose to leverage their structure similarity to dynamically adapt the prior to the observed object. The prior adaptation intrinsically associates the adopted prior with different objects, from which we can accurately reconstruct the 3D canonical model of the specific object for pose estimation. To further enhance the structure characteristic of objects, we extract low-rank structure points from the dense object point cloud, therefore more efficiently incorporating sparse structural information during prior adaptation. Extensive experiments on CAMERA25 and REAL275 benchmarks demonstrate significant performance improvement.

Requirements

  • Linux (tested on Ubuntu 18.04)
  • Python 3.6+
  • CUDA 10.0
  • PyTorch 1.1.0

Installation

Conda virtual environment

We recommend using conda to setup the environment.

If you have already installed conda, please use the following commands.

conda create -n sgpa python=3.6
conda activate sgpa
pip install -r requirements.txt

Build PointNet++

cd SGPA/pointnet2/pointnet2
python setup.py install

Build nn_distance

cd SGPA/lib/nn_distance
python setup.py install

Dataset

Download camera_train, camera_val, real_train, real_test, ground-truth annotations and mesh models provided by NOCS.

Then, organize and preprocess these files following SPD. For a quick evaluation, we provide the processed testing data for REAL275. You can download it here and organize the testing data as follows:

SGPA
├── data
│   └── Real
│       ├──test
│       └──test_list.txt
└── results
    └── mrcnn_results
        └──real_test

Evaluation

Please download our trained model here and put it in the 'SGPA/model' directory. Then, you can have a quick evaluation on the REAL275 dataset using the following command.

bash eval.sh

Train

In order to train the model, remember to download the complete dataset, organize and preprocess the dataset properly at first.

train.py is the main file for training. You can simply start training using the following command.

bash train.sh

Citation

If you find the code useful, please cite our paper.

@inproceedings{chen2021sgpa,
  title={Sgpa: Structure-guided prior adaptation for category-level 6d object pose estimation},
  author={Chen, Kai and Dou, Qi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2773--2782},
  year={2021}
}

Any questions, please feel free to contact Kai Chen ([email protected]).

Acknowledgment

The dataset is provided by NOCS. Our code is developed based on SPD and Pointnet2.PyTorch.

Owner
Chen Kai
Chen Kai
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022