PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

Related tags

Deep LearningSGPA
Overview

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

This is the PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation by Kai Chen and Qi Dou.

intro

Abstract

Category-level 6D object pose estimation aims to predict the position and orientation for unseen objects, which plays a pillar role in many scenarios such as robotics and augmented reality. The significant intra-class variation is the bottleneck challenge in this task yet remains unsolved so far. In this paper, we take advantage of category prior to overcome this problem by innovating a structure-guided prior adaptation scheme to accurately estimate 6D pose for individual objects. Different from existing prior based methods, given one object and its corresponding category prior, we propose to leverage their structure similarity to dynamically adapt the prior to the observed object. The prior adaptation intrinsically associates the adopted prior with different objects, from which we can accurately reconstruct the 3D canonical model of the specific object for pose estimation. To further enhance the structure characteristic of objects, we extract low-rank structure points from the dense object point cloud, therefore more efficiently incorporating sparse structural information during prior adaptation. Extensive experiments on CAMERA25 and REAL275 benchmarks demonstrate significant performance improvement.

Requirements

  • Linux (tested on Ubuntu 18.04)
  • Python 3.6+
  • CUDA 10.0
  • PyTorch 1.1.0

Installation

Conda virtual environment

We recommend using conda to setup the environment.

If you have already installed conda, please use the following commands.

conda create -n sgpa python=3.6
conda activate sgpa
pip install -r requirements.txt

Build PointNet++

cd SGPA/pointnet2/pointnet2
python setup.py install

Build nn_distance

cd SGPA/lib/nn_distance
python setup.py install

Dataset

Download camera_train, camera_val, real_train, real_test, ground-truth annotations and mesh models provided by NOCS.

Then, organize and preprocess these files following SPD. For a quick evaluation, we provide the processed testing data for REAL275. You can download it here and organize the testing data as follows:

SGPA
├── data
│   └── Real
│       ├──test
│       └──test_list.txt
└── results
    └── mrcnn_results
        └──real_test

Evaluation

Please download our trained model here and put it in the 'SGPA/model' directory. Then, you can have a quick evaluation on the REAL275 dataset using the following command.

bash eval.sh

Train

In order to train the model, remember to download the complete dataset, organize and preprocess the dataset properly at first.

train.py is the main file for training. You can simply start training using the following command.

bash train.sh

Citation

If you find the code useful, please cite our paper.

@inproceedings{chen2021sgpa,
  title={Sgpa: Structure-guided prior adaptation for category-level 6d object pose estimation},
  author={Chen, Kai and Dou, Qi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2773--2782},
  year={2021}
}

Any questions, please feel free to contact Kai Chen ([email protected]).

Acknowledgment

The dataset is provided by NOCS. Our code is developed based on SPD and Pointnet2.PyTorch.

Owner
Chen Kai
Chen Kai
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022