An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Overview

SensatUrban-BEV-Seg3D

This is the official implementation of our BEV-Seg3D-Net, an efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Features of our framework/model:

  • leveraging various proven methods in 2D segmentation for 3D tasks
  • achieve competitive performance in the SensatUrban benchmark
  • fast inference process, about 1km^2 area per minute with RTX 3090.

To be done:

  • add more complex/efficient fusion models
  • add more backbone like ResNeXt, HRNet, DenseNet, etc.
  • add more novel projection methods like pointpillars

For technical details, please refer to:

Efficient Urban-scale Point Clouds Segmentation with BEV Projection
Zhenhong Zou, Yizhe Li, Xinyu Zhang

(1) Setup

This code has been tested with Python 3.7, PyTorch 1.8, CUDA 11.0 on Ubuntu 16.04. PyTorch of earlier versions should be supported.

  • Clone the repository
git clone https://github.com/zouzhenhong98/SensatUrban-BEV-Seg3D.git & cd SensatUrban-BEV-Seg3D
  • Setup python environment
conda create -n bevseg python=3.7
source activate bevseg
pip install -r requirements.txt

(2) Preprocess

We provide various data analysis and preprocess methods for the SensatUrban dataset. (Part of the following steps are optional)

  • Before data generation, change the path_to_your_dataset in preprocess/point_EDA_31.py by:
Sensat = SensatUrbanEDA()
Sensat.root_dir = 'path_to_your_dataset'
Sensat.split = 'train' # change to 'test' for inference
  • Initialize the BEV projection arguments. We provide our optimal setting below, but you can set other values for analysis:
Sensat.grids_scale = 0.05
Sensat.grids_size = 25
Sensat.grids_step = 25
  • (Optional) If you want to test the sliding window points generator:
data_dir = os.path.join(self.root_dir, self.split)
ply_list = sorted(os.listdir(data_dir))[0]
ply_path = os.path.join(data_dir, ply_name)
ply_data = self.load_points(ply_path, reformat=True)
grids_data = self.grid_generator(ply_data, self.grids_size, self.grids_step, False) # return an Iterator
  • Calculating spatial overlap ratio in BEV projection:
Sensat.single_ply_analysis(Sensat.exp_point_overlay_count) # randomly select one ply file
Sensat.batch_ply_analysis(Sensat.exp_point_overlay_count) # for all ply files in the path
  • Calculating class overlap ratio in BEV projection, that means we ignore overlapped points belonging to the same category:
Sensat.single_ply_analysis(Sensat.exp_class_overlay_count) # randomly select one ply file
Sensat.batch_ply_analysis(Sensat.exp_class_overlay_count) # for all ply files in the path
  • Test BEV projection and 3D remapping with IoU index test (reflecting the consistency in 3D Segmentation and BEV Segmentation tasks):
Sensat.evaluate('offline', Sensat.map_offline_img2pts)
  • BEV data generation:
Sensat.batch_ply_analysis(Sensat.exp_gen_bev_projection)
  • Point Spatial Overlap Ratio Statistics at different projection scales

  • More BEV projection testing results refers to our sample images: completion test at imgs/completion_test, edge detection with different CV operators at imgs/edge_detection, rgb and label projection samples at imgs/projection_sample

(3) Training & Inference

We provide two basic multimodal fusion network developped from U-Net in the modeling folder, unet.py is the basic feature fusion, and uneteca.py is the attention fusion.

  • Change the path_to_your_dataset in mypath.py and dataloaders/init.py >>> 'cityscapes'

  • Train from sratch

python train.py --use-balanced-weights --batch-size 8 --base-size 500 --crop-size 500 --loss-type focal --epochs 200 --eval-interval 1
  • Change the save_dir in inference.py

  • Inference on test data

python inference.py --batch-size 8
  • Prediction Results Visualization (RGB, altitude, label, prediction)

(4) Evaluation

  • Remap your BEV prediction to 3D and evaluate in 3D benchmark in preprocess/point_EDA_31.py (following the prvious initialization steps):
Sensat.evaluate_batch(Sensat.evaluate_batch_nn(Sensat.eval_offline_img2pts))

(5) Citation

If you find our work useful in your research, please consider citing: (Information is coming soon! We are asking the open-access term of the conference!)

(6) Acknowledgment

  • Part of our data processing code (read_ply and metrics) is developped based on https://github.com/QingyongHu/SensatUrban
  • Our code of neural network is developped based on a U-Net repo from the github, but unfortunately we are unable to recognize the raw github repo. Please tell us if you can help.

(7) Related Work

To learn more about our fusion segmentation methods, please refers to our previous work:

@article{Zhang2021ChannelAI,
    title={Channel Attention in LiDAR-camera Fusion for Lane Line Segmentation},
    author={Xinyu Zhang and Zhiwei Li and Xin Gao and Dafeng Jin and Jun Li},
    journal={Pattern Recognit.},
    year={2021},
    volume={118},
    pages={108020}
}

@article{Zou2021ANM,
    title={A novel multimodal fusion network based on a joint coding model for lane line segmentation},
    author={Zhenhong Zou and Xinyu Zhang and Huaping Liu and Zhiwei Li and A. Hussain and Jun Li},
    journal={ArXiv},
    year={2021},
    volume={abs/2103.11114}
}
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022