A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

Overview

europilot

Overview

Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms.

alt tag alt tag

A convolutional neural network (CNN) controls the steering wheel inside ETS2.

Think of europilot as a bridge between the game environment, and your favorite deep-learning framework, such as Keras or Tensorflow. With europilot, you can capture the game screen input, and programmatically control the truck inside the simulator.

Europilot can be used in one of two ways: training or testing.

For training, europilot can capture the screen input and output a numpy array in realtime, while simultaenously getting the wheel-joystick values. The mapping between the relevant screenshot and the joystick values is written inside a csv file.

In the csv file, each row has the screenshot filename with the joystick values.

For testing, europilot can create a virtual joystick driver that can be recognized inside the game, which can be used to programmatically control the truck. Using this joystick, you can create a real-time inference network that uses the game screen as the input, and outputs the relevant joystick commands, such as steering.

Click to see an example demo on YouTube.

Click to read a blog post on our motivation behind the project.

Getting Started

First, clone the project

git clone [email protected]:marshq/europilot.git

If you want to install europilot locally,

python setup.py install

You can also install prerequisite libraries and do something directly in this project path.

pip install -r requirements.txt
python
>>> import europilot
>>> europilot.__version__
'0.0.1'

To start generating training data, check out generate_training_data.py in the scripts directory.

NOTE that opencv compiled with opencv_contrib module is required to use screen selection gui.

Otherwise, you should specify a screen area in which will be captured by assigning custom Box object to train.Config.BOX.

After the generation of training data is finished, you may want to manually inspect each image to check if unwanted data was recorded. Check clean_up.ipynb for a simple script to remove unwanted data together with the accompanying row in the csv file. Also check out preprocess.ipynb and get_mean_std.ipynb for an example code to preprocess the data.

PilotNet.ipynb is an implementation of Mariusz Bojarski's End to End Learning for Self-Driving Cars, with slight differences. The demo shown above was created with the following notebook.

For running inference on the model, check out inference.ipynb in the scripts directory.

Sample Training Data

For those interested, a driving dataset consisting of 162,495 images is available here (17G).

General Architecture

Europilot hides the complexity of capturing the screen data and joystick data with a simplified interface. Internally, the joystick datastream is parsed into a machine readable format, which for us was a Logitech G27. If you have a different joystick, modify joystick.py to your needs.

We currently have example notebooks implemented with Keras. We hope to add more examples in other popular frameworks.

A virtual joystick driver is implemented by attaching userspace drivers in the kernel, by outputting events into udev. This driver can be recognized inside ETS2. Please note that the driver must be initialized before the game is started, or else it will not show up in the controller page.

Why Euro Truck Simulator 2?

Europilot captures the screen input, therefore technically it is game agnostic. We chose ETS2 as our first target for several reasons.

  • Multi platform support: ETS2 supports Windows, OS X, and Linux. Developers can run the game in a Macbook, or in a Ubuntu workstation. This put ETS2 ahead of games such as GTAV.

  • Realistic graphics/physics: We looked at open source games, but found that the graphics or physics engine was not realistic enough for our use case. ETS2 afterall, has "simulator" inside its title.

  • Fun: Having a large dataset is critical to developing a good model. Therefore you, as a developer, have to play many hours of whatever game you target. Fortunately, ETS2 is fun to play!

Documentation

For now, refer to the README and the source code.

Compatibility

Europilot runs on linux. It supports python 2.6-2.7 and 3.3+.

How to Contribute

Any contribution regarding new feature, bug fix and documentation is welcomed.

But we highly recommend you to read this guideline before you make a pull request.

Coding convention

We generally follow PEP8 with few additional conventions.

  • Line-length can exceed 79 characters, to 100 in case of comments.
  • Always use single-quoted strings, unless a single-quote occurs within the string.
  • Docstrings use double-quote.

Roadmap

Feature roadmap includes

  • Run ETS2 on virtual machine and train/test a model remotely
  • Web leaderboard
  • Capture custom(ex. left, right side cam) vision data while driving in ETS2
  • Support reinforcement learning workflow which is simliar to openai universe
  • Windows support, if there is demand.

License

This project is licensed under the MIT License.

Owner
We are bringing self-driving technology to the commercial trucking industry.
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022