KaziText is a tool for modelling common human errors.

Related tags

Deep Learningkazitext
Overview

KaziText

KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatical error correction corpora in M2 format.

The tool was introduced in Understanding Model Robustness to User-generated Noisy Texts.

Requirements

A set of requirements is listed in requirements.txt. Moreover, UDPipe model has to be downloaded for used languages (see http://hdl.handle.net/11234/1-3131) and linked in udpipe_tokenizer.py.

Overview

KaziText defines a set of aspects located in aspects. These model following phenomena:

  • Casing Errors
  • Common Other Errors (for most common phrases)
  • Errors in Diacritics
  • Punctuation Errors
  • Spelling Errors
  • Errors in wrongly used suffix/prefix
  • Whitespace Errors
  • Word-Order Errors

Each aspect has a set of internal probabilities (e.g. the probability of a user typing first letter of a starting word in lower-case instead of upper-case) that are estimated from M2 GEC corpora.

A complete set of aspects with their internal probabilities is called profile. We provide precomputed profiles for Czech, English, Russian and German in profiles as json files. The profiles are additionally split into dev and test. Also there are 4 profiles for Czech and 2 profiles for English differing in the underlying user domain (e.g. natives vs second learners).

To noise a text using a profile, use:

python introduce_errors.py $infile $outfile $profile $lang 

introduce_errors.py script offers a variety of switches (run python introduce_errors.py --help to display them). One noteworthy is --alpha that serves for regulating final text error rate (set it to value lower than 1 to reduce number of errors; set to to value bigger than 1 to have more noisy texts). Apart for profiles themselves, we also precomputed set of alphas that are stored as .csv files in respective profiles folders and store values for alphas to reach 5-30 final text word error rates as well as so called reference-alpha word error rate that corresponds to the same error rate as the original M2 files the profile was estimated from had. To have for example noisy text at circa 5% word error rate noised by Romani profile, use --profile dev/cs_romi.json --alpha 0.2.

Moreover, we provide several scripts (noise*.py) for noising specific data formats.

To estimate a profile for given M2 file, run:

python estimate_all_ratios.py $m2_pattern outfile

To estimate normalization alphas file, see estimate_alpha.sh that describes iterative process of noising clean texts with an alpha, measuring text's noisiness and changing alpha respectively.

Other notes

  • Russian RULEC-GEC was normalized using normalize_russian_m2.py
Owner
ÚFAL
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University
ÚFAL
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022