Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

Overview

CorrelAid Machine Learning Winter School

Welcome to the CorrelAid ML Winter School!

Task

The problem we want to solve is to classify trees in Roosevelt National Forest.

Setup

Please make sure you have a modern Python 3 installation. We recommend the Python distribution Miniconda that is available for all OS.

The easiest way to get started is with a clean virtual environment. You can do so by running the following commands, assuming that you have installed Miniconda or Anaconda.

$ conda create -n winter-school python=3.9
$ conda activate winter-school
(winter-school) $ pip install -r requirements.txt
(winter-school) $ python -m ipykernel install --user --name winter-school --display-name "Python 3.9 (winter-school)"

The first command will create a new environment with Python 3.9. To use this environment, you call conda activate <name> with the name of the environment as second step. Once activated, you can install packages as usual with the pip package manager. You will install all listed requirements from the provided requirements.txt as a third step. Finally, to actually make your new environment available as kernel within a Jupyter notebook, you need to run ipykernel install, which is the fourth command.

Once the setup is complete, you can run any notebook by calling

(winter-school) $ <jupyter-lab|jupyter notebook>

jupyter lab is opening your browser with a local version of JupyterLab, which is a web-based interactive development environment that is somewhat more powerful and more modern than the older Jupyter Notebook. Both work fine, so you can choose the tool that is more to your liking. We recommend to go with Jupyter Lab as it provides a file browser, among other improvements.

Data

The data to be analyzed is one of the classic data sets from the UCI Machine Learning Repository, the Forest Cover Type Dataset.

The dataset contains tree observations from four areas of the Roosevelt National Forest in Colorado. All observations are cartographic variables (no remote sensing) from 30 meter x 30 meter sections of forest. There are over half a million measurements total!

The dataset includes information on tree type, shadow coverage, distance to nearby landmarks (roads etcetera), soil type, and local topography.

Note: We provide the data set as it can be downloaded from kaggle and not in its original form from the UCI repository.

Attribute Information:

Given is the attribute name, attribute type, the measurement unit and a brief description. The forest cover type is the classification problem. The order of this listing corresponds to the order of numerals along the rows of the database.

Name / Data Type / Measurement / Description

  • Elevation / quantitative /meters / Elevation in meters
  • Aspect / quantitative / azimuth / Aspect in degrees azimuth
  • Slope / quantitative / degrees / Slope in degrees
  • Horizontal_Distance_To_Hydrology / quantitative / meters / Horz Dist to nearest surface water features
  • Vertical_Distance_To_Hydrology / quantitative / meters / Vert Dist to nearest surface water features
  • Horizontal_Distance_To_Roadways / quantitative / meters / Horz Dist to nearest roadway
  • Hillshade_9am / quantitative / 0 to 255 index / Hillshade index at 9am, summer solstice
  • Hillshade_Noon / quantitative / 0 to 255 index / Hillshade index at noon, summer soltice
  • Hillshade_3pm / quantitative / 0 to 255 index / Hillshade index at 3pm, summer solstice
  • Horizontal_Distance_To_Fire_Points / quantitative / meters / Horz Dist to nearest wildfire ignition points
  • Wilderness_Area (4 binary columns) / qualitative / 0 (absence) or 1 (presence) / Wilderness area designation
  • Soil_Type (40 binary columns) / qualitative / 0 (absence) or 1 (presence) / Soil Type designation
  • Cover_Type (7 types) / integer / 1 to 7 / Forest Cover Type designation
Owner
CorrelAid
Soziales Engagement 2.0 - Datenanalyse für den guten Zweck
CorrelAid
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022