Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Related tags

Deep LearningPi-NAS
Overview

Π-NAS

This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift.

Our Trained Models

  • Here is a summary of our searched models:

    ImageNet FLOPs Params [email protected] [email protected]
    Π-NAS-cls 5.38G 27.1M 81.6% 95.7%
    Mask-RCNN on COCO 2017 APbb APmk
    Π-NAS-trans 44.07 39.50
    DeeplabV3 on ADE20K pixAcc mIoU
    Π-NAS-trans 81.27 45.47
    DeeplabV3 on Cityscapes mIoU
    Π-NAS-trans 80.70

Usage

1. Requirements

  • Install third-party requirements with command pip install -e .
  • Prepare ImageNet, COCO 2017, ADE20K and Cityscapes datasets
    • Our data paths are at /data/ImageNet, /data/coco, /data/ADEChallengeData2016 and /data/citys, respectively.
    • You can specify COCO's data path through environment variable DETECTRON2_DATASETS and others in experiments/recognition/verify.py, encoding/datasets/ade20k.py and encoding/datasets/cityscapes.py.
  • Download our checkpoint files

2. Evaluate our models

  • You can evaluate our models with the following command:

    ImageNet FLOPs Params [email protected] [email protected]
    Π-NAS-cls 5.38G 27.1M 81.6% 95.7%
    python experiments/recognition/verify.py --dataset imagenet --model alone_resnest50 --choice-indices 3 0 1 3 2 3 1 2 0 3 2 1 3 0 3 2 --resume /path/to/PiNAS_cls.pth.tar
    Mask-RCNN on COCO 2017 APbb APmk
    Π-NAS-trans 44.07 39.50
    DETECTRON2_DATASETS=/data python experiments/detection/plain_train_net.py --config-file experiments/detection/configs/mask_rcnn_ResNeSt_50_FPN_syncBN_1x.yaml --num-gpus 8 --eval-only MODEL.WEIGHTS /path/to/PiNAS_trans_COCO.pth MODEL.RESNETS.CHOICE_INDICES [3,3,3,3,1,1,3,3,3,0,0,1,1,0,2,1]
    DeeplabV3 on ADE20K pixAcc mIoU
    Π-NAS-trans 81.27 45.47
    python experiments/segmentation/test.py --dataset ADE20K --model deeplab --backbone alone_resnest50 --choice-indices 3 3 3 3 1 1 3 3 3 0 0 1 1 0 2 1 --aux --se-loss --resume /path/to/PiNAS_trans_ade.pth.tar --eval
    DeeplabV3 on Cityscapes mIoU
    Π-NAS-trans 80.70
    python experiments/segmentation/test.py --dataset citys --base-size 2048 --crop-size 768 --model deeplab --backbone alone_resnest50 --choice-indices 3 3 3 3 1 1 3 3 3 0 0 1 1 0 2 1 --aux --se-loss --resume /path/to/PiNAS_trans_citys.pth.tar --eval

Training and Searching

This reimplementation is based on OpenSelfSup and MoCo. Please acknowledge their contribution.

cd OpenSelfSup && pip install -v -e .

1. Π-NAS Learning

bash tools/dist_train.sh configs/pinas_learning.py 8 --work_dir /path/to/save/logs/and/models

2. Extract supernet backbone weights

python tools/extract_backbone_weights.py /checkpoint/of/1. /extracted/weight/of/1.

3. Linear Training

bash tools/dist_train.sh configs/pinas_linear_training.py 8 --pretrained /extracted/weight/of/1. --work_dir /path/to/save/logs/and/models

4. Linear Evaluation

bash tools/dist_train.sh configs/pinas_linear_evaluation.py 8 --resume_from /checkpoint/of/3. --work_dir /path/to/save/logs/and/models
Owner
Jiqi Zhang
Jiqi Zhang
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022