Supervised domain-agnostic prediction framework for probabilistic modelling

Overview

skpro

PyPI version Build Status License

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data points.

The package offers a variety of features and specifically allows for

  • the implementation of probabilistic prediction strategies in the supervised contexts
  • comparison of frequentist and Bayesian prediction methods
  • strategy optimization through hyperparamter tuning and ensemble methods (e.g. bagging)
  • workflow automation

List of developers and contributors

Documentation

The full documentation is available here.

Installation

Installation is easy using Python's package manager

$ pip install skpro

Contributing & Citation

We welcome contributions to the skpro project. Please read our contribution guide.

If you use skpro in a scientific publication, we would appreciate citations.

Comments
  • Distributions as return objects

    Distributions as return objects

    Re-opening the sub-issue opened in #3 and commented upon by @murphyk

    Question: should skpro's predict methods return a vector of distribution objects? For example, using the distributions from scipy.stats which implement methods pdf, cdf, mean, var, etc.

    Pro:

    • this would be using an existing, consolidated, and well-supported interface
    • it might be easier to use
    • it might be easier to understand

    Contra:

    • mixture types are not supported
    • l2 norm is not supported (as would be needed for squared/Gneiting loss)
    • mixed distributions on the reals, especially empirical distributions (weighted sum of deltas) which are returned by Bayesian packages are not supported
    • vectors of distributions are not supported, alternatively Cartesian products of distributions
    • this is not the status quo
    help wanted 
    opened by fkiraly 11
  • documentation: np.mean(y_pred) does not work

    documentation: np.mean(y_pred) does not work

    I'm following along with this intro example.. However this line fails

    (numpy.mean(y_pred) * 2).shape
    

    Error below (seems to be because Distribution objects don't support the mean() function but instead insist on obscurely calling it point!)

    np.mean(y_pred)
    Traceback (most recent call last):
    
      File "<ipython-input-38-19819be87ab5>", line 1, in <module>
        np.mean(y_pred)
    
      File "/home/kpmurphy/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py", line 2920, in mean
        out=out, **kwargs)
    
      File "/home/kpmurphy/anaconda3/lib/python3.7/site-packages/numpy/core/_methods.py", line 75, in _mean
        ret = umr_sum(arr, axis, dtype, out, keepdims)
    
    TypeError: unsupported operand type(s) for +: 'Distribution' and 'Distribution'
    
    opened by murphyk 3
  • First example: 'utils' not found

    First example: 'utils' not found

    The first example in your documentation (DensityBaseline) does not run right on my machine: it throws a 'module not found' exception at the call to 'utils'.

    This might be a python version problem (I am using 3.6), so perhaps it's not an error in the normal sense - though I don't see any specification that the package required a particular python version. Apologies if I missed it: in any case, I fixed it by importing matplotlib instead: i.e.

    import matplotlib.pyplot as plt plt.scatter(y_test, y_pred)

    instead of:

    import utils utils.plot_performance(y_test, y_pred)

    opened by Thomas-M-H-Hope 2
  • problem in loading the skpro

    problem in loading the skpro

    It has been 2 days that I am trying to import skpro. But I can not I keep getting this error:

    cannot import name 'six' from 'sklearn.externals' (C:\Users\My Book\anaconda3\lib\site-packages\sklearn\externals_init_.py)

    opened by honestee 1
  • (wish)list of probabilistic regressors to implement or to interface

    (wish)list of probabilistic regressors to implement or to interface

    A wishlist for probabilistic regression methods to implement or interface. This is partly copied from the R counterpart https://github.com/mlr-org/mlr3proba/issues/32 . Number of stars at the end is estimated difficulty or time investment.

    GLM

    • [ ] generalized linear model(s) with regression link, e.g., Gaussian *
    • [ ] generalized linear model(s) with count link, e.g., Poisson *
    • [ ] heteroscedastic linear regression ***
    • [ ] Bayesian GLM where conjugate priors are available, e.g., GLM with Gaussian link ***

    KRR aka Gaussian process regression

    • [ ] vanilla kernel ridge regression with fixed kernel parameters and variance *
    • [ ] kernel ridge regression with MLE for kernel parameters and regularization parameter **
    • [ ] heteroscedastic KRR or Gaussian processes ***

    CDE

    • [ ] variants of conditional density estimation (Nadaraya-Watson type) **
    • [ ] reduction to density estimation by binning of input variables, then apply unconditional density estimation **

    Tree-based

    • [ ] probabilistic regression trees **

    Neural networks

    • [ ] interface tensorflow probability - some hard-coded NN architectures **
    • [ ] generic tensorflow probability interface - some hard-coded NN architectures ***

    Bayesian toolboxes

    • [ ] generic pymc3 interface ***
    • [ ] generic pyro interface ****
    • [ ] generic Stan interface ****
    • [ ] generic JAGS interface ****
    • [ ] generic BUGS interface ****
    • [ ] generic Bayesian interface - prior-valued hyperparameters *****

    Pipeline elements for target transformation

    • [ ] distr fixed target transformation **
    • [ ] distr predictive target calibration **

    Composite techniques, reduction to deterministic regression

    • [ ] stick mean, sd, from a deterministic regressor which already has these as return types into some location/scale distr family (Gaussian, Laplace) *
    • [ ] use model 1 for the mean, model 2 fit to residuals (squared, absolute, or log), put this in some location/scale distr family (Gaussian, Laplace) **
    • [ ] upper/lower thresholder for a regression prediction, to use as a pipeline element for a forced lower variance bound **
    • [ ] generic parameter prediction by elicitation, output being plugged into parameters of a distr object not necessarily scale/location ****
    • [ ] reduction via bootstrapped sampling of a determinstic regressor **

    Ensembling type pipeline elements and compositors

    • [ ] simple bagging, averaging of pdf/cdf **
    • [ ] probabilistic boosting ***
    • [ ] probabilistic stacking ***

    baselines

    • [ ] always predict a Gaussian with mean = training mean, var = training var *
    • [ ] IMPORTANT as featureless baseline: reduction to distr/density estimation to produce an unconditional probabilistic regressor **
    • [ ] IMPORTANT as deterministic style baseline: reduction to deterministic regression, mean = prediction by det.regressor, var = training sample var, distr type = Gaussian (or Laplace) **

    Other reduction from/to probabilistic regression

    • [ ] reducing deterministic regression to probabilistic regression - take mean, median or mode **
    • [ ] reduction(s) to quantile regression, use predictive quantiles to make a distr ***
    • [ ] reducing deterministic (quantile) regression to probabilistic regression - take quantile(s) **
    • [ ] reducing interval regression to probabilistic regression - take mean/sd, or take quantile(s) **
    • [ ] reduction to survival, as the sub-case of no censoring **
    • [ ] reduction to classification, by binning ***
    good first issue 
    opened by fkiraly 0
  • skpro-refactoring (version-2)

    skpro-refactoring (version-2)

    See below some comments/description of the coming refactoring contents :

    • Distribution classes refactoring in a more OOD way (see. skpro->distribution)
    • Losse functions (see. metrics->distribution)
    • Estimators (see. metrics->distribution)

    Some descriptive notebooks (in docs->notebooks) and a full set of unit test (in tests) are also available.

    opened by jesellier 24
Releases(v1.0.1-beta)
Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023