A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

Overview

Awesome-LiDAR-Camera-Calibration

Awesome

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes.

Outline

0. Introduction

For applications such as autonomous driving, robotics, navigation systems, and 3-D scene reconstruction, data of the same scene is often captured using both lidar and camera sensors. To accurately interpret the objects in a scene, it is necessary to fuse the lidar and the camera outputs together. Lidar camera calibration estimates a rigid transformation matrix (extrinsics, rotation+translation, 6 DoF) that establishes the correspondences between the points in the 3-D lidar plane and the pixels in the image plane.

Example

1. Target-based methods

Paper Target Feature Optimization Toolbox Note
Extrinsic Calibration of a Camera and Laser Range Finder (improves camera calibration), 2004 checkerboard C:Plane (a), L: pts in plane (m) point-to-plane CamLaserCalibraTool CN
Fast Extrinsic Calibration of a Laser Rangefinder to a Camera, 2005 checkerboard C: Plane (a), L: Plane (m) plane(n/d) correspondence, point-to-plane LCCT *
Extrinsic calibration of a 3D laser scanner and an omnidirectional camera, 2010 checkerboard C: plane (a), L: pts in plane (m) point-to-plane cam_lidar_calib *
LiDAR-Camera Calibration using 3D-3D Point correspondences, 2017 cardboard + ArUco C: 3D corners (a), L: 3D corners (m) ICP lidar_camera_calibration *
Reflectance Intensity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR and Panoramic Camera Using a Printed Chessboard, 2017 checkerboard C: 2D corners (a), L: 3D corners (a) PnP, angle difference ILCC *
Extrinsic Calibration of Lidar and Camera with Polygon, 2018 regular cardboard C: 2D edge, corners (a), L: 3D edge, pts in plane (a) point-to-line, point-inside-polygon ram-lab/plycal *
Automatic Extrinsic Calibration of a Camera and a 3D LiDAR using Line and Plane Correspondences, 2018 checkerboard C: 3D edge, plane(a), L: 3D edge, pts in plane (a) direcion/normal, point-to-line, point-to-plane Matlab LiDAR Toolbox *
Improvements to Target-Based 3D LiDAR to Camera Calibration, 2020 cardboard with ArUco C: 2d corners (a), L: 3D corners (a) PnP, IOU github *
ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems, 2020 checkerboard C: 2D corners (a), L: 3D corners (a) PnP ACSC *
Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor Setups, 2021 cardboard with circle & Aruco C: 3D points (a), L: 3D points (a) ICP velo2cam_ calibration *

C: camera, L: LiDAR, a: automaic, m: manual

2. Targetless methods

2.1. Motion-based methods

Paper Feature Optimization Toolbox Note
LiDAR and Camera Calibration Using Motions Estimated by Sensor Fusion Odometry, 2018 C: motion (ICP), L: motion (VO) hand-eye calibration * *

2.2. Scene-based methods

2.2.1. Traditional methods

Paper Feature Optimization Toolbox Note
Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information, 2012 C:grayscale, L: reflectivity mutual information, BB steepest gradient ascent Extrinsic Calib *
Automatic Calibration of Lidar and Camera Images using Normalized Mutual Information, 2013 C:grayscale, L: reflectivity, noraml normalized MI, particle swarm * *
Automatic Online Calibration of Cameras and Lasers, 2013 C: Canny edge, L: depth-discontinuous edge correlation, grid search * *
SOIC: Semantic Online Initialization and Calibration for LiDAR and Camera, 2020 semantic centroid PnP * *
A Low-cost and Accurate Lidar-assisted Visual SLAM System, 2021 C: edge(grayscale), L: edge (reflectivity, depth projection) ICP, coordinate descent algorithms CamVox *
Pixel-level Extrinsic Self Calibration of High Resolution LiDAR and Camera in Targetless Environments,2021 C:Canny edge(grayscale), L: depth-continuous edge point-to-line, Gaussian-Newton livox_camera_calib *
CRLF: Automatic Calibration and Refinement based on Line Feature for LiDAR and Camera in Road Scenes, 2021 C:straight line, L: straight line perspective3-lines (P3L) * CN

2.2.2. Deep-learning methods

Pape Toolbox Note
RegNet: Multimodal sensor registration using deep neural networks, 2017,IV regnet *
CalibNet: Geometrically supervised extrinsic calibration using 3d spatial transformer networks,2018,IROS CalibNet *

3. Other toolboxes

Toolbox Introduction Note
Apollo sensor calibration tools targetless method, no source code CN
Autoware camera lidar calibrator pick points mannually, PnP *
Autoware calibration camera lidar checkerboard, similar to LCCT CN
livox_camera_lidar_calibration pick points mannually, PnP *
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022