Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Overview

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

1. Classification Task

PyTorch implementation of DisturbLabel: Regularizing CNN on the Loss Layer [CVPR 2016] extended with Directional DisturbLabel method.

This classification code is built on top of https://github.com/amirhfarzaneh/disturblabel-pytorch/blob/master/README.md project and utilizes implementation from ResNet 18 from https://github.com/huyvnphan/PyTorch_CIFAR10

Directional DisturbLabel

  if args.mode == 'ddl' or args.mode == 'ddldr':
      out = F.softmax(output, dim=1)
      norm = torch.norm(out, dim=1)
      out = out / norm[:, None]
      idx = []
      for i in range(len(out)):
          if out[i,target[i]] > .5:
              idx.append(i)
              
      if len(idx) > 0:
          target[idx] = disturb(target[idx]).to(device) 

Usage

python main_ddl.py --mode=dl --alpha=20

Most important arguments

--dataset - which data to use

Possible values:

value dataset
MNIST MNIST
FMNIST Fashion MNIST
CIFAR10 CIFAR-10
CIFAR100 CIFAR-100
ART Art Images: Drawing/Painting/Sculptures/Engravings
INTEL Intel Image Classification

Default: MNIST

-- mode - regularization method applied

Possible values:

value method
noreg Without any regularization
dl Vanilla DistrubLabel
ddl Directional DisturbLabel
dropout Dropout
dldr DistrubLabel+Dropout
ddldl Directional DL+Dropout

Default: ddl

--alpha - alpha for vanilla Distrub label and Directional DisturbLabel

Possible values: int from 0 to 100. Default: 20

--epochs - number of training epochs

Default: 100

2. Regression Task

DisturbValue

def noise_generator(x, alpha):
    noise = torch.normal(0, 1e-8, size=(len(x), 1))
    noise[torch.randint(0, len(x), (int(len(x)*(1-alpha)),))] = 0

    return noise

DisturbError

def disturberror(outputs, values):
    epsilon = 1e-8
    e = values - outputs
    for i in range(len(e)):
        if (e[i] < epsilon) & (e[i] >= 0):
            values[i] = values[i] + e[i] / 4
        elif (e[i] > -epsilon) & (e[i] < 0):
            values[i] = values[i] - e[i] / 4

    return values

Datasets

  1. Boston: 506 instances, 13 features
  2. Bike Sharing: 731 instances, 13 features
  3. Air Quality(AQ): 9357 instances, 10 features
  4. make_regression(MR): 5000 instances, 30 features (random sample for regression)
  5. Housing Price - Kaggle(HP): 1460 instances, 81 features
  6. Student Performance (SP): 649 instances, 13 features (20 - categorical were dropped)
  7. Superconductivity Dataset (SD): 21263 instances, 81 features
  8. Communities & Crime (CC): 1994 instances, 100 features
  9. Energy Prediction (EP): 19735 instancies, 27 features

Experiment Setting

Model: MLP which has 3 hidden layers

Result: Averaged over 20 runs

Hyperparameters: Using grid search options

Usage

python main_new.py --de y --dataset "bike" --dv_annealing y --epoch 100 --T 80
python main_new.py --de y --dv y --dataset "bike" -epoch 100
python main_new.py --de y --l2 y --dataset "air" -epoch 100
python main_new.py --dv y --dv_annealing y --dataset "air" -epoch 100 #for annealing setting dv should be "y"

--dataset: 'bike', 'air', 'boston', 'housing', 'make_sklearn', 'superconduct', 'energy', 'crime', 'students'
--dropout, --dv(disturbvalue), --de(disturberror), --l2, --dv_annealing: (string) y / n
--lr: (float)
--batch_size, --epoch, --T(cos annealing T): (int)
-- default dv_annealing: alpha_min = 0.05, alpha_max = 0.12, T_i = 80
Owner
Yongho Kim
Research Assistant
Yongho Kim
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022