Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Overview

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search

Pytorch implementation for "Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search".

Curriculum Neural Architecture Search

Requirements

python>=3.7, torch==1.5.0, torchvision==0.6.0, graphviz

Please install all the requirements in requirements.txt.

Datasets

We consider two benchmark classification datsets, including CIFAR-10 and ImageNet.

CIFAR-10 can be automatically downloaded by torchvision.

ImageNet needs to be manually downloaded (preferably to a SSD) following the instructions here.

Training Method

Curriculum search on CIFAR-10

python search.py -o outputs/search

Evaluation Method

  1. Put the searched architectures in cnas/model/genotypes.py as follows.
CNAS = Genotype.from_arch(
    normal_arch=[('dil_conv_3x3', 1, 2),
                 ('sep_conv_3x3', 0, 2),
                 ('sep_conv_3x3', 0, 3),
                 ('skip_connect', 1, 3),
                 ('sep_conv_3x3', 1, 4),
                 ('max_pool_3x3', 3, 4),
                 ('sep_conv_3x3', 2, 5),
                 ('sep_conv_3x3', 4, 5)],
    normal_concat=[2, 3, 4, 5],
    reduced_arch=[('sep_conv_3x3', 0, 2),
                  ('skip_connect', 1, 2),
                  ('dil_conv_5x5', 2, 3),
                  ('skip_connect', 1, 3),
                  ('dil_conv_3x3', 2, 4),
                  ('sep_conv_3x3', 1, 4),
                  ('sep_conv_5x5', 0, 5),
                  ('sep_conv_3x3', 3, 5)],
    reduced_concat=[2, 3, 4, 5])
  1. Evaluate the searched architecture on CIFAR-10 and ImageNet dataset using the following scripts.

Evaluation on CIFAR-10:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 --master_port=23333 \
eval_arch.py \
--arch CNAS --init_channels 36 --layers 20 \
-o outputs/cifar10

Evaluation on ImageNet:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 --master_port=22333 \
eval_arch.py \
--max_epochs 250 --scheduler linear \
--dataset imagenet --data /path/to/imagenet \
--batch_size 64 --no_bias_decay --num_workers 8 \
--arch CNAS --init_channels 48 --layers 14 \
-o outputs/imagenet

Pretrained models

We have released our CNAS ImageNet pretrained model (top-1 accuracy 75.4%, top-5 accuracy 92.6%) on here.

You can use the following codes to load the ptrained models:

from cnas.model.eval import cnas_imagenet
model = cnas_imagenet(pretrained=True)

Citation

If you use any part of our code in your research, please cite our paper:

@InProceedings{guo2020breaking,
  title = {Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search},
  author = {Guo, Yong and Chen, Yaofo and Zheng, Yin and Zhao, Peilin and Chen, Jian and Huang, Junzhou and Tan, Mingkui},
  booktitle = {Proceedings of the 37th International Conference on Machine Learning},
  year = {2020},
  pages = {3822--3831}
}
You might also like...
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

PyTorch code for the paper
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

ICRA 2021
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Official Implementation of DE-CondDETR and DELA-CondDETR in
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Official Implementation of DE-DETR and DELA-DETR in
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Comments
  • Bump numpy from 1.18.2 to 1.22.0

    Bump numpy from 1.18.2 to 1.22.0

    Bumps numpy from 1.18.2 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Owner
guoyong
Max Planck Institute for Informatics
guoyong
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022