This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

Overview

OODformer: Out-Of-Distribution Detection Transformer

This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Transformer in PyTorch using CIFAR as an illustrative example:
##Getting started

At first please install all the dependencies using : pip install -r requirement.txt ##Datasets Please download all the in-distribution (CIFAR-10,CIFAR-100,ImageNet-30) and out-of-distribution dataset(LSUN_resize, ImageNet_resize, Places-365, DTD, Stanford Dogs, Food-101, Caltech-256, CUB-200) to data folder under the root directory.

Training

For training Vision Transformer and its Data efficient variant please download their corresponding pre-train weight from ViT and DeiT repository.

To fine-tune vision transformer network on any in-distribution dataset on multi GPU settings:

srun --gres=gpu:4  python vit/src/train.py --exp-name name_of_the_experimet --tensorboard --model-arch b16 --checkpoint-path path/to/checkpoint --image-size 224 --data-dir data/ImageNet30 --dataset ImageNet --num-classes 30 --train-steps 4590 --lr 0.01 --wd 1e-5 --n-gpu 4 --num-workers 16 --batch-size 512 --method SupCE
  • model-arch : specify the model of vit and deit variants (see vit/src/config.py )
  • method : currently we support only supervised cross-entropy
  • train_steps : cyclic lr has been used for lr scheduler, number of training epoch can be calculated using (#train steps* batch size)/#training samples
  • checkpoint_path : for loading pre-trained weight of vision transformer based on their different model.

Training Support

OODformer can also be trained with various supervised and self-supervised loss like :

Training Base ResNet model

To train resnet variants(e.g., resent-50,wide-resent) as base model on in-distribution dataset :

srun --gres=gpu:4  python main_ce.py --batch_size 512 --epochs 500 --model resent34 --learning_rate 0.8  --cosine --warm --dataset cifar10

Evaluation

To evaluate the similarity distance from the mean embedding of an in-distribution (e.g., CIFAR-10) class a list of distance metrics (e.g., Mahalanobis, Cosine, Euclidean, and Softmax) can be used with OODformer as stated below :

srun --gres=gpu:1 python OOD_Distance.py --ckpt checkpoint_path --model vit --model_arch b16 --distance Mahalanobis --dataset id_dataset --out_dataset ood_dataset

Visualization

Various embedding visualization can be viewed using generate_tsne.py

(1) UMAP of in-distribution embedding

(2) UMAP of combined in and out-of distribution embedding

Reference

@article{koner2021oodformer,
  title={OODformer: Out-Of-Distribution Detection Transformer},
  author={Koner, Rajat and Sinhamahapatra, Poulami and Roscher, Karsten and G{\"u}nnemann, Stephan and Tresp, Volker},
  journal={arXiv preprint arXiv:2107.08976},
  year={2021}
}

Acknowledgments

Part of this code is inspired by HobbitLong/SupContrast.

Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
đź—ş General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022