This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

Overview

OODformer: Out-Of-Distribution Detection Transformer

This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Transformer in PyTorch using CIFAR as an illustrative example:
##Getting started

At first please install all the dependencies using : pip install -r requirement.txt ##Datasets Please download all the in-distribution (CIFAR-10,CIFAR-100,ImageNet-30) and out-of-distribution dataset(LSUN_resize, ImageNet_resize, Places-365, DTD, Stanford Dogs, Food-101, Caltech-256, CUB-200) to data folder under the root directory.

Training

For training Vision Transformer and its Data efficient variant please download their corresponding pre-train weight from ViT and DeiT repository.

To fine-tune vision transformer network on any in-distribution dataset on multi GPU settings:

srun --gres=gpu:4  python vit/src/train.py --exp-name name_of_the_experimet --tensorboard --model-arch b16 --checkpoint-path path/to/checkpoint --image-size 224 --data-dir data/ImageNet30 --dataset ImageNet --num-classes 30 --train-steps 4590 --lr 0.01 --wd 1e-5 --n-gpu 4 --num-workers 16 --batch-size 512 --method SupCE
  • model-arch : specify the model of vit and deit variants (see vit/src/config.py )
  • method : currently we support only supervised cross-entropy
  • train_steps : cyclic lr has been used for lr scheduler, number of training epoch can be calculated using (#train steps* batch size)/#training samples
  • checkpoint_path : for loading pre-trained weight of vision transformer based on their different model.

Training Support

OODformer can also be trained with various supervised and self-supervised loss like :

Training Base ResNet model

To train resnet variants(e.g., resent-50,wide-resent) as base model on in-distribution dataset :

srun --gres=gpu:4  python main_ce.py --batch_size 512 --epochs 500 --model resent34 --learning_rate 0.8  --cosine --warm --dataset cifar10

Evaluation

To evaluate the similarity distance from the mean embedding of an in-distribution (e.g., CIFAR-10) class a list of distance metrics (e.g., Mahalanobis, Cosine, Euclidean, and Softmax) can be used with OODformer as stated below :

srun --gres=gpu:1 python OOD_Distance.py --ckpt checkpoint_path --model vit --model_arch b16 --distance Mahalanobis --dataset id_dataset --out_dataset ood_dataset

Visualization

Various embedding visualization can be viewed using generate_tsne.py

(1) UMAP of in-distribution embedding

(2) UMAP of combined in and out-of distribution embedding

Reference

@article{koner2021oodformer,
  title={OODformer: Out-Of-Distribution Detection Transformer},
  author={Koner, Rajat and Sinhamahapatra, Poulami and Roscher, Karsten and G{\"u}nnemann, Stephan and Tresp, Volker},
  journal={arXiv preprint arXiv:2107.08976},
  year={2021}
}

Acknowledgments

Part of this code is inspired by HobbitLong/SupContrast.

Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023