This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Overview

Black-Box-Defense

This repository contains the code and models necessary to replicate the results of our recent paper:

How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, Sijia Liu

ICLR'22 (Spotlight)
Paper: https://openreview.net/forum?id=W9G_ImpHlQd

We formulate the problem of black-box defense (as shown in Fig. 1) and investigate it through the lens of zeroth-order (ZO) optimization. Different from existing work, our paper aims to design the restriction-least black-box defense and our formulation is built upon a query-based black-box setting, which avoids the use of surrogate models.

We propose a novel black-box defense approach, ZO AutoEncoder-based Denoised Smoothing (ZO-AE-DS) as shown in Fig. 3, which is able to tackle the challenge of ZO optimization in high dimensions and convert a pre-trained non-robust ML model into a certifiably robust model using only function queries.

To train ZO-AE-DS, we adopt a two-stage training protocol. 1) White-box pre-training on AE: At the first stage, we pre-train the AE model by calling a standard FO optimizer (e.g., Adam) to minimize the reconstruction loss. The resulting AE will be used as the initialization of the second-stage training. We remark that the denoising model can also be pre-trained. However, such a pre-training could hamper optimization, i.e., making the second-stage training over θ easily trapped at a poor local optima. 2) End-to-end training: At the second stage, we keep the pre-trained decoder intact and merge it into the black-box system.

The performance comparisons with baselines are shown in Table 2.

Overview of the Repository

Our code is based on the open source codes of Salmanet al.(2020). Our repo contains the code for our experiments on MNIST, CIFAR-10, STL-10, and Restricted ImageNet.

Let us dive into the files:

  1. train_classifier.py: a generic script for training ImageNet/Cifar-10 classifiers, with Gaussian agumentation option, achieving SOTA.
  2. AE_DS_train.py: the main code of our paper which is used to train the different AE-DS/DS model with FO/ZO optimization methods used in our paper.
  3. AE_DS_certify.py: Given a pretrained smoothed classifier, returns a certified L2-radius for each data point in a given dataset using the algorithm of Cohen et al (2019).
  4. architectures.py: an entry point for specifying which model architecture to use per classifiers, denoisers and AutoEncoders.
  5. archs/ contains the network architecture files.
  6. trained_models/ contains the checkpoints of AE-DS and base classifiers.

Getting Started

  1. git clone https://github.com/damon-demon/Black-Box-Defense.git

  2. Install dependencies:

    conda create -n Black_Box_Defense python=3.6
    conda activate Black_Box_Defense
    conda install numpy matplotlib pandas seaborn scipy==1.1.0
    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch # for Linux
    
  3. Train a AE-DS model using Coordinate-Wise Gradient Estimation (CGE) for ZO optimization on CIFAR-10 Dataset.

    python3 AE_DS_train.py --model_type AE_DS --lr 1e-3 --outdir ZO_AE_DS_lr-3_q192_Coord --dataset cifar10 --arch cifar_dncnn --encoder_arch cifar_encoder_192_24 --decoder_arch cifar_decoder_192_24 --epochs 200 --train_method whole --optimization_method ZO --zo_method CGE --pretrained-denoiser $pretrained_denoiser  --pretrained-encoder $pretrained_encoder --pretrained-decoder $pretrained_decoder --classifier $pretrained_clf --noise_sd 0.25  --q 192
    
  4. Certify the robustness of a AE-DS model on CIFAR-10 dataset.

    python3 AE_DS_certify.py --dataset cifar10 --arch cifar_dncnn --encoder_arch cifar_encoder_192_24 --decoder_arch cifar_decoder_192_24 --base_classifier $pretrained_base_classifier --pretrained_denoiser $pretrained_denoiser  --pretrained-encoder $pretrained_encoder --pretrained-decoder $pretrained_decoder --sigma 0.25 --outfile ZO_AE_DS_lr-3_q192_Coord_NoSkip_CF_result/sigma_0.25 --batch 400 --N 10000 --skip 1 --l2radius 0.25
    

Check the results in ZO_AE_DS_lr-3_q192_Coord_NoSkip_CF_result/sigma_0.25.

Citation

@inproceedings{
zhang2022how,
title={How to Robustify Black-Box {ML} Models? A Zeroth-Order Optimization Perspective},
author={Yimeng Zhang and Yuguang Yao and Jinghan Jia and Jinfeng Yi and Mingyi Hong and Shiyu Chang and Sijia Liu},
booktitle={International Conference on Learning Representations},
year={2022},
url={ https://openreview.net/forum?id=W9G_ImpHlQd }
}

Contact

For more information, contact Yimeng(Damon) Zhang with any additional questions or comments.

Owner
OPTML Group
OPtimization and Trustworthy Machine Learning Group @ Michigan State University
OPTML Group
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022