Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Related tags

Deep LearningPnP-GA
Overview

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Python 3.6 Pytorch 1.5.0 CUDA 10.2 License CC BY-NC

Our paper is accepted by ICCV2021.

Teaser

Picture: Overview of the proposed Plug-and-Play (PnP) adaption framework for generalizing gaze estimation to a new domain.

Main image

Picture: The proposed architecture.


Results

Input Method DE→DM DE→DD DG→DM DG→DD
Face Baseline 8.767 8.578 7.662 8.977
Face Baseline + PnP-GA 5.529 ↓36.9% 5.867 ↓31.6% 6.176 ↓19.4% 7.922 ↓11.8%
Face ResNet50 8.017 8.310 8.328 7.549
Face ResNet50 + PnP-GA 6.000 ↓25.2% 6.172 ↓25.7% 5.739 ↓31.1% 7.042 ↓6.7%
Face SWCNN 10.939 24.941 10.021 13.473
Face SWCNN + PnP-GA 8.139 ↓25.6% 15.794 ↓36.7% 8.740 ↓12.8% 11.376 ↓15.6%
Face + Eye CA-Net -- -- 21.276 30.890
Face + Eye CA-Net + PnP-GA -- -- 17.597 ↓17.3% 16.999 ↓44.9%
Face + Eye Dilated-Net -- -- 16.683 18.996
Face + Eye Dilated-Net + PnP-GA -- -- 15.461 ↓7.3% 16.835 ↓11.4%

This repository contains the official PyTorch implementation of the following paper:

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation
Yunfei Liu, Ruicong Liu, Haofei Wang, Feng Lu

Abstract: Deep neural networks have significantly improved appearance-based gaze estimation accuracy. However, it still suffers from unsatisfactory performance when generalizing the trained model to new domains, e.g., unseen environments or persons. In this paper, we propose a plugand-play gaze adaptation framework (PnP-GA), which is an ensemble of networks that learn collaboratively with the guidance of outliers. Since our proposed framework does not require ground-truth labels in the target domain, the existing gaze estimation networks can be directly plugged into PnP-GA and generalize the algorithms to new domains. We test PnP-GA on four gaze domain adaptation tasks, ETH-to-MPII, ETH-to-EyeDiap, Gaze360-to-MPII, and Gaze360-to-EyeDiap. The experimental results demonstrate that the PnP-GA framework achieves considerable performance improvements of 36.9%, 31.6%, 19.4%, and 11.8% over the baseline system. The proposed framework also outperforms the state-of-the-art domain adaptation approaches on gaze domain adaptation tasks.

Resources

Material related to our paper is available via the following links:

System requirements

  • Only Linux is tested, Windows is under test.
  • 64-bit Python 3.6 installation.

Playing with pre-trained networks and training

Config

You need to modify the config.yaml first, especially xxx/image, xxx/label, and xxx_pretrains params.

xxx/image represents the path of label file.

xxx/root represents the path of image file.

xxx_pretrains represents the path of pretrained models.

A example of label file is data folder. Each line in label file is conducted as:

p00/face/1.jpg 0.2558059438789034,-0.05467275933864655 -0.05843388117618364,0.46745964684693614 ... ...

Where our code reads image data form os.path.join(xxx/root, "p00/face/1.jpg") and reads ground-truth labels of gaze direction from the rest in label file.

Train

We provide three optional arguments, which are --oma2, --js and --sg. They repersent three different network components, which could be found in our paper.

--source and --target represent the datasets used as the source domain and the target domain. You can choose among eth, gaze360, mpii, edp.

--i represents the index of person which is used as the training set. You can set it as -1 for using all the person as the training set.

--pics represents the number of target domain samples for adaptation.

We also provide other arguments for adjusting the hyperparameters in our PnP-GA architecture, which could be found in our paper.

For example, you can run the code like:

python3 adapt.py --i 0 --pics 10 --savepath path/to/save --source eth --target mpii --gpu 0 --js --oma2 --sg

Test

--i, --savepath, --target are the same as training.

--p represents the index of person which is used as the training set in the adaptation process.

For example, you can run the code like:

python3 test.py --i -1 --p 0 --savepath path/to/save --target mpii

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{liu2021PnP_GA,
  title={Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation},
  author={Liu, Yunfei and Liu, Ruicong and Wang, Haofei and Lu, Feng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Contact

If you have any questions, feel free to E-mail me via: lyunfei(at)buaa.edu.cn

Owner
Yunfei Liu
;-)
Yunfei Liu
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022