CTC segmentation python package

Overview

CTC segmentation

CTC segmentation can be used to find utterances alignments within large audio files.

Installation

  • With pip:
pip install ctc-segmentation
  • From the Arch Linux AUR as python-ctc-segmentation-git using your favourite AUR helper.

  • From source:

git clone https://github.com/lumaku/ctc-segmentation
cd ctc-segmentation
cythonize -3 ctc_segmentation/ctc_segmentation_dyn.pyx
python setup.py build
python setup.py install --optimize=1 --skip-build

Example Code

  1. prepare_text filters characters not in the dictionary, and generates the character matrix.
  2. ctc_segmentation computes character-wise alignments from CTC activations of an already trained CTC-based network.
  3. determine_utterance_segments converts char-wise alignments to utterance-wise alignments.
  4. In a post-processing step, segments may be filtered by their confidence value.

This code is from asr_align.py of the ESPnet toolkit:

from ctc_segmentation import ctc_segmentation
from ctc_segmentation import CtcSegmentationParameters
from ctc_segmentation import determine_utterance_segments
from ctc_segmentation import prepare_text

# ...

config = CtcSegmentationParameters()
char_list = train_args.char_list

for idx, name in enumerate(js.keys(), 1):
    logging.info("(%d/%d) Aligning " + name, idx, len(js.keys()))
    batch = [(name, js[name])]
    feat, label = load_inputs_and_targets(batch)
    feat = feat[0]
    with torch.no_grad():
        # Encode input frames
        enc_output = model.encode(torch.as_tensor(feat).to(device)).unsqueeze(0)
        # Apply ctc layer to obtain log character probabilities
        lpz = model.ctc.log_softmax(enc_output)[0].cpu().numpy()
    # Prepare the text for aligning
    ground_truth_mat, utt_begin_indices = prepare_text(
        config, text[name], char_list
    )
    # Align using CTC segmentation
    timings, char_probs, state_list = ctc_segmentation(
        config, lpz, ground_truth_mat
    )
    # Obtain list of utterances with time intervals and confidence score
    segments = determine_utterance_segments(
        config, utt_begin_indices, char_probs, timings, text[name]
    )
    # Write to "segments" file
    for i, boundary in enumerate(segments):
        utt_segment = (
            f"{segment_names[name][i]} {name} {boundary[0]:.2f}"
            f" {boundary[1]:.2f} {boundary[2]:.9f}\n"
        )
        args.output.write(utt_segment)

After the segments are written to a segments file, they can be filtered with the parameter min_confidence_score. This is minium confidence score in log space as described in the paper. Utterances with a low confidence score are discarded. This parameter may need adjustment depending on dataset, ASR model and language. For the german ASR model, a value of -1.5 worked very well, but for TEDlium, a lower value of about -5.0 seemed more practical.

awk -v ms=${min_confidence_score} '{ if ($5 > ms) {print} }' ${unfiltered} > ${filtered}

Parameters

There are several notable parameters to adjust the working of the algorithm:

  • min_window_size: Minimum window size considered for a single utterance. The current default value should be OK in most cases.

  • Localization: The character set is taken from the model dict, i.e., usually are generated with SentencePiece. An ASR model trained in the corresponding language and character set is needed. For asian languages, no changes to the CTC segmentation parameters should be necessary. One exception: If the character set contains any punctuation characters, "#", or the Greek char "ε", adapt the setting in an instance of CtcSegmentationParameters in segmentation.py.

  • CtcSegmentationParameters includes a blank character. Copy over the Blank character from the dictionary to the configuration, if in the model dictionary e.g. "<blank>" instead of the default "_" is used. If the Blank in the configuration and in the dictionary mismatch, the algorithm raises an IndexError at backtracking.

  • If replace_spaces_with_blanks is True, then spaces in the ground truth sequence are replaces by blanks. This option is enabled by default and improves compability with dictionaries with unknown space characters.

  • To align utterances with longer unkown audio sections between them, use blank_transition_cost_zero (default: False). With this option, the stay transition in the blank state is free. A transition to the next character is only consumed if the probability to switch is higher. In this way, more time steps can be skipped between utterances. Caution: in combination with replace_spaces_with_blanks == True, this may lead to misaligned segments.

Two parameters are needed to correctly map the frame indices to a time stamp in seconds:

  • subsampling_factor: If the encoder sub-samples its input, the number of frames at the CTC layer is reduced by this factor. A BLSTMP encoder with subsampling 1_2_2_1_1 has a subsampling factor of 4.
  • frame_duration_ms: This is the non-overlapping duration of a single frame in milliseconds (the inverse of frames per millisecond). Note: if fs is set, then frame_duration_ms is ignored.

But not all ASR systems have subsampling. If you want to directly use the sampling rate:

  1. For a given sample rate, say, 16kHz, set fs=16000.
  2. Then set the subsampling_factor to the number of sample points on a single CTC-encoded frame. In default ASR systems, this can be calculated from the hop length of the windowing times encoder subsampling factor. For example, if the hop length is 128, and the subsampling factor in the encoder is 4, then set subsampling_factor=512.

How it works

1. Forward propagation

Character probabilites from each time step are obtained from a CTC-based network. With these, transition probabilities are mapped into a trellis diagram. To account for preambles or unrelated segments in audio files, the transition cost are set to zero for the start-of-sentence or blank token.

Forward trellis

2. Backtracking

Starting from the time step with the highest probability for the last character, backtracking determines the most probable path of characters through all time steps.

Backward path

3. Confidence score

As this method generates a probability for each aligned character, a confidence score for each utterance can be derived. For example, if a word within an utterance is missing, this value is low.

Confidence score

The confidence score helps to detect and filter-out bad utterances.

Reference

The full paper can be found in the preprint https://arxiv.org/abs/2007.09127 or published at https://doi.org/10.1007/978-3-030-60276-5_27. To cite this work:

@InProceedings{ctcsegmentation,
author="K{\"u}rzinger, Ludwig
and Winkelbauer, Dominik
and Li, Lujun
and Watzel, Tobias
and Rigoll, Gerhard",
editor="Karpov, Alexey
and Potapova, Rodmonga",
title="CTC-Segmentation of Large Corpora for German End-to-End Speech Recognition",
booktitle="Speech and Computer",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="267--278",
abstract="Recent end-to-end Automatic Speech Recognition (ASR) systems demonstrated the ability to outperform conventional hybrid DNN/HMM ASR. Aside from architectural improvements in those systems, those models grew in terms of depth, parameters and model capacity. However, these models also require more training data to achieve comparable performance.",
isbn="978-3-030-60276-5"
}
Owner
Ludwig Kürzinger
Ludwig Kürzinger
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022