PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

Overview

PyTorch NeRF and pixelNeRF

NeRF: Open NeRF in Colab

Tiny NeRF: Open Tiny NeRF in Colab

pixelNeRF: Open pixelNeRF in Colab

This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis" and the pixelNeRF model described in "pixelNeRF: Neural Radiance Fields from One or Few Images". While there are other PyTorch implementations out there (e.g., this one and this one for NeRF, and the authors' official implementation for pixelNeRF), I personally found them somewhat difficult to follow, so I decided to do a complete rewrite of NeRF myself. I tried to stay as close to the authors' text as possible, and I added comments in the code referring back to the relevant sections/equations in the paper. The final result is a tight 357 lines of heavily commented code (303 sloc—"source lines of code"—on GitHub) all contained in a single file. For comparison, this PyTorch implementation has approximately 970 sloc spread across several files, while this PyTorch implementation has approximately 905 sloc.

run_tiny_nerf.py trains a simplified NeRF model inspired by the "Tiny NeRF" example provided by the NeRF authors. This NeRF model does not use fine sampling and the MLP is smaller, but the code is otherwise identical to the full model code. At only 155 sloc, it might be a good place to start for people who are completely new to NeRF. If you prefer your code more object-oriented, check out run_nerf_alt.py and run_tiny_nerf_alt.py.

A Colab notebook for the full model can be found here, while a notebook for the tiny model can be found here. The generate_nerf_dataset.py script was used to generate the training data of the ShapeNet car.

For the following test view:

run_nerf.py generated the following after 20,100 iterations (a few hours on a P100 GPU):

Loss: 0.00022201683896128088

while run_tiny_nerf.py generated the following after 19,600 iterations (~35 minutes on a P100 GPU):

Loss: 0.0004151524917688221

The advantages of streamlining NeRF's code become readily apparent when trying to extend NeRF. For example, training a pixelNeRF model only required making a few changes to run_nerf.py bringing it to 370 sloc (notebook here). For comparison, the official pixelNeRF implementation has approximately 1,300 pixelNeRF-specific (i.e., not related to the image encoder or dataset) sloc spread across several files. The generate_pixelnerf_dataset.py script was used to generate the training data of ShapeNet cars.

For the following source object and view:

and target view:

run_pixelnerf.py generated the following after 73,243 iterations (~12 hours on a P100 GPU; the full pixelNeRF model was trained for 400,000 iterations, which took six days):

Loss: 0.004468636587262154

The "smearing" is an artifact caused by the bounding box sampling method.

Similarly, training an "object-centric NeRF" (i.e., where the object is rotated instead of the camera) is identical to run_tiny_nerf.py (notebook here). Rotating an object is equivalent to holding the object stationary and rotating both the camera and the lighting in the opposite direction, which is how the object-centric dataset is generated in generate_obj_nerf_dataset.py.

For the following test view:

run_tiny_obj_nerf.py generated the following after 19,400 iterations (~35 minutes on a P100 GPU):

Loss: 0.0005469498573802412

Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023