PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

Overview

PyTorch NeRF and pixelNeRF

NeRF: Open NeRF in Colab

Tiny NeRF: Open Tiny NeRF in Colab

pixelNeRF: Open pixelNeRF in Colab

This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis" and the pixelNeRF model described in "pixelNeRF: Neural Radiance Fields from One or Few Images". While there are other PyTorch implementations out there (e.g., this one and this one for NeRF, and the authors' official implementation for pixelNeRF), I personally found them somewhat difficult to follow, so I decided to do a complete rewrite of NeRF myself. I tried to stay as close to the authors' text as possible, and I added comments in the code referring back to the relevant sections/equations in the paper. The final result is a tight 357 lines of heavily commented code (303 sloc—"source lines of code"—on GitHub) all contained in a single file. For comparison, this PyTorch implementation has approximately 970 sloc spread across several files, while this PyTorch implementation has approximately 905 sloc.

run_tiny_nerf.py trains a simplified NeRF model inspired by the "Tiny NeRF" example provided by the NeRF authors. This NeRF model does not use fine sampling and the MLP is smaller, but the code is otherwise identical to the full model code. At only 155 sloc, it might be a good place to start for people who are completely new to NeRF. If you prefer your code more object-oriented, check out run_nerf_alt.py and run_tiny_nerf_alt.py.

A Colab notebook for the full model can be found here, while a notebook for the tiny model can be found here. The generate_nerf_dataset.py script was used to generate the training data of the ShapeNet car.

For the following test view:

run_nerf.py generated the following after 20,100 iterations (a few hours on a P100 GPU):

Loss: 0.00022201683896128088

while run_tiny_nerf.py generated the following after 19,600 iterations (~35 minutes on a P100 GPU):

Loss: 0.0004151524917688221

The advantages of streamlining NeRF's code become readily apparent when trying to extend NeRF. For example, training a pixelNeRF model only required making a few changes to run_nerf.py bringing it to 370 sloc (notebook here). For comparison, the official pixelNeRF implementation has approximately 1,300 pixelNeRF-specific (i.e., not related to the image encoder or dataset) sloc spread across several files. The generate_pixelnerf_dataset.py script was used to generate the training data of ShapeNet cars.

For the following source object and view:

and target view:

run_pixelnerf.py generated the following after 73,243 iterations (~12 hours on a P100 GPU; the full pixelNeRF model was trained for 400,000 iterations, which took six days):

Loss: 0.004468636587262154

The "smearing" is an artifact caused by the bounding box sampling method.

Similarly, training an "object-centric NeRF" (i.e., where the object is rotated instead of the camera) is identical to run_tiny_nerf.py (notebook here). Rotating an object is equivalent to holding the object stationary and rotating both the camera and the lighting in the opposite direction, which is how the object-centric dataset is generated in generate_obj_nerf_dataset.py.

For the following test view:

run_tiny_obj_nerf.py generated the following after 19,400 iterations (~35 minutes on a P100 GPU):

Loss: 0.0005469498573802412

Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022