PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

Overview

PyTorch NeRF and pixelNeRF

NeRF: Open NeRF in Colab

Tiny NeRF: Open Tiny NeRF in Colab

pixelNeRF: Open pixelNeRF in Colab

This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis" and the pixelNeRF model described in "pixelNeRF: Neural Radiance Fields from One or Few Images". While there are other PyTorch implementations out there (e.g., this one and this one for NeRF, and the authors' official implementation for pixelNeRF), I personally found them somewhat difficult to follow, so I decided to do a complete rewrite of NeRF myself. I tried to stay as close to the authors' text as possible, and I added comments in the code referring back to the relevant sections/equations in the paper. The final result is a tight 357 lines of heavily commented code (303 sloc—"source lines of code"—on GitHub) all contained in a single file. For comparison, this PyTorch implementation has approximately 970 sloc spread across several files, while this PyTorch implementation has approximately 905 sloc.

run_tiny_nerf.py trains a simplified NeRF model inspired by the "Tiny NeRF" example provided by the NeRF authors. This NeRF model does not use fine sampling and the MLP is smaller, but the code is otherwise identical to the full model code. At only 155 sloc, it might be a good place to start for people who are completely new to NeRF. If you prefer your code more object-oriented, check out run_nerf_alt.py and run_tiny_nerf_alt.py.

A Colab notebook for the full model can be found here, while a notebook for the tiny model can be found here. The generate_nerf_dataset.py script was used to generate the training data of the ShapeNet car.

For the following test view:

run_nerf.py generated the following after 20,100 iterations (a few hours on a P100 GPU):

Loss: 0.00022201683896128088

while run_tiny_nerf.py generated the following after 19,600 iterations (~35 minutes on a P100 GPU):

Loss: 0.0004151524917688221

The advantages of streamlining NeRF's code become readily apparent when trying to extend NeRF. For example, training a pixelNeRF model only required making a few changes to run_nerf.py bringing it to 370 sloc (notebook here). For comparison, the official pixelNeRF implementation has approximately 1,300 pixelNeRF-specific (i.e., not related to the image encoder or dataset) sloc spread across several files. The generate_pixelnerf_dataset.py script was used to generate the training data of ShapeNet cars.

For the following source object and view:

and target view:

run_pixelnerf.py generated the following after 73,243 iterations (~12 hours on a P100 GPU; the full pixelNeRF model was trained for 400,000 iterations, which took six days):

Loss: 0.004468636587262154

The "smearing" is an artifact caused by the bounding box sampling method.

Similarly, training an "object-centric NeRF" (i.e., where the object is rotated instead of the camera) is identical to run_tiny_nerf.py (notebook here). Rotating an object is equivalent to holding the object stationary and rotating both the camera and the lighting in the opposite direction, which is how the object-centric dataset is generated in generate_obj_nerf_dataset.py.

For the following test view:

run_tiny_obj_nerf.py generated the following after 19,400 iterations (~35 minutes on a P100 GPU):

Loss: 0.0005469498573802412

Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023