Dynamic Environments with Deformable Objects (DEDO)

Related tags

Deep Learningdedo
Overview

DEDO  - Dynamic Environments with Deformable Objects

DEDO - Dynamic Environments with Deformable Objects

DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed for researchers in the machine learning, reinforcement learning, robotics and computer vision communities. The suite provides a set of every day tasks that involve deformables, such as hanging cloth, dressing a person, and buttoning buttons. We provide examples for integrating two popular reinforcement learning libraries: StableBaselines3 and RLlib. We also provide reference implementaionts for training a various Variational Autoencoder variants with our environment. DEDO is easy to set up and has few dependencies, it is highly parallelizable and supports a wide range of customizations: loading custom objects and textures, adjusting material properties.

<<<<<<< HEAD

Note: updates for this repo are in progress (until the presentation at NeurIPS2021 in mid-December).

@inproceedings{dedo2021,
  title={Dynamic Environments with Deformable Objects},
  author={Rika Antonova and Peiyang Shi and Hang Yin and Zehang Weng and Danica Kragic},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track},
  year={2021},
}

d221b6994e8189457ea6f0513e6807824d11bb29 Table of Contents:
Installation
GettingStarted
Tasks
Use with RL
Use with VAE
Customization

Please refer to Wiki for the full documentation

Installation

Optional initial step: create a new conda environment with conda create --name dedo python=3.7 and activate it with conda activate dedo. Conda is not strictly needed, alternatives like virtualenv can be used; a direct install without using virtual environments is ok as well.

git clone https://github.com/contactrika/dedo
cd dedo
pip install numpy  # important: Nessasary for compiling numpy-enabled PyBullet
pip install -e .

Python3.7 is recommended as we have encountered that on some OS + CPU combo, PyBullet could not be compiled with Numpy enabled in Pip Python 3.8. To enable recording/logging videos install ffmpeg:

sudo apt-get install ffmpeg

See more in Installation Guide in wiki

Getting started

To get started, one can run one of the following commands to visualize the tasks through a hard-coded policy.

python -m dedo.demo --env=HangGarment-v1 --viz --debug
  • dedo.demo is the demo module
  • --env=HangGarment-v1 specifies the environment
  • --viz enables the GUI
  • ---debug outputs additional information in the console
  • --cam_resolution 400 specifies the size of the output window

See more in Usage-guide

Tasks

See more in Task Overview

We provide a set of 10 tasks involving deformable objects, most tasks contains 5 handmade deformable objects. There are also two procedurally generated tasks, ButtonProc and HangProcCloth, in which the deformable objects are procedurally generated. Furthermore, to improve generalzation, the v0 of each task will randomizes textures and meshes.

All tasks have -v1 and -v2 with a particular choice of meshes and textures that is not randomized. Most tasks have versions up to -v5 with additional mesh and texture variations.

Tasks with procedurally generated cloth (ButtonProc and HangProcCloth) generate random cloth objects for all versions (but randomize textures only in v0).

HangBag

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangBag-v1 --viz

HangBag-v0: selects one of 108 bag meshes; randomized textures

HangBag-v[1-3]: three bag versions with textures shown below:

images/imgs/hang_bags_annotated.jpg

HangGarment

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangGarment-v1 --viz

HangGarment-v0: hang garment with randomized textures (a few examples below):

HangGarment-v[1-5]: 5 apron meshes and texture combos shown below:

images/imgs/hang_garments_5.jpg

HangGarment-v[6-10]: 5 shirt meshes and texture combos shown below:

images/imgs/hang_shirts_5.jpg

HangProcCloth

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangProcCloth-v1 --viz

HangProcCloth-v0: random textures, procedurally generated cloth with 1 and 2 holes.

HangProcCloth-v[1-2]: same, but with either 1 or 2 holes

images/imgs/hang_proc_cloth.jpg

Buttoning

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Button-v1 --viz

ButtonProc-v0: randomized textures and procedurally generated cloth with 2 holes, randomized hole/button positions.

ButtonProc-v[1-2]: procedurally generated cloth, 1 or two holes.

images/imgs/button_proc.jpg

Button-v0: randomized textures, but fixed cloth and button positions.

Button-v1: fixed cloth and button positions with one texture (see image below):

images/imgs/button.jpg

Hoop

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Hoop-v1 --viz

Hoop-v0: randomized textures Hoop-v1: pre-selected textures images/imgs/hoop_and_lasso.jpg

Lasso

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Lasso-v1 --viz

Lasso-v0: randomized textures Lasso-v1: pre-selected textures

DressBag

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=DressBag-v1 --viz

DressBag-v0, DressBag-v[1-5]: demo for -v1 shown below

images/imgs/dress_bag.jpg

Visualizations of the 5 backpack mesh and texture variants for DressBag-v[1-5]:

images/imgs/backpack_meshes.jpg

DressGarment

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=DressGarment-v1 --viz

DressGarment-v0, DressGarment-v[1-5]: demo for -v1 shown below

images/imgs/dress_garment.jpg

Mask

python -m dedo.demo_preset --env=Mask-v1 --viz

Mask-v0, Mask-v[1-5]: a few texture variants shown below: images/imgs/dress_garment.jpg

RL Examples

dedo/run_rl_sb3.py gives an example of how to train an RL algorithm from Stable Baselines 3:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

dedo/run_rllib.py gives an example of how to train an RL algorithm using RLLib:

python -m dedo.run_rllib --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

For documentation, please refer to Arguments Reference page in wiki

To launch the Tensorboard:

tensorboard --logdir=/tmp/dedo --bind_all --port 6006 \
  --samples_per_plugin images=1000

SVAE Examples

dedo/run_svae.py gives an example of how to train various flavors of VAE:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

dedo/run_rllib.py gives an example of how to train an RL algorithm from Stable Baselines 3:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

To launch the Tensorboard:

tensorboard --logdir=/tmp/dedo --bind_all --port 6006 \
  --samples_per_plugin images=1000

Customization

To load custom object you would first have to fill an entry in DEFORM_INFO in task_info.py. The key should the the .obj file path relative to data/:

DEFORM_INFO = {
...
    # An example of info for a custom item.
    'bags/custom.obj': {
        'deform_init_pos': [0, 0.47, 0.47],
        'deform_init_ori': [np.pi/2, 0, 0],
        'deform_scale': 0.1,
        'deform_elastic_stiffness': 1.0,
        'deform_bending_stiffness': 1.0,
        'deform_true_loop_vertices': [
            [0, 1, 2, 3]  # placeholder, since we don't know the true loops
        ]
    },

Then you can use --override_deform_obj flag:

python -m dedo.demo --env=HangBag-v0 --cam_resolution 200 --viz --debug \
    --override_deform_obj bags/custom.obj

For items not in DEFORM_DICT you will need to specify sensible defaults, for example:

python -m dedo.demo --env=HangGarment-v0 --viz --debug \
  --override_deform_obj=generated_cloth/generated_cloth.obj \
  --deform_init_pos 0.02 0.41 0.63 --deform_init_ori 0 0 1.5708

Example of scaling up the custom mesh objects:

python -m dedo.demo --env=HangGarment-v0 --viz --debug \
   --override_deform_obj=generated_cloth/generated_cloth.obj \
   --deform_init_pos 0.02 0.41 0.55 --deform_init_ori 0 0 1.5708 \
   --deform_scale 2.0 --anchor_init_pos -0.10 0.40 0.70 \
   --other_anchor_init_pos 0.10 0.40 0.70

See more in Customization Wiki

Additonal Assets

BGarment dataset is adapter from Berkeley Garment Library

Sewing dataset is adapted from Generating Datasets of 3D Garments with Sewing Patterns

You might also like...
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

PyTorch implementation of Deformable Convolution
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

MoCoPnet - Deformable 3D Convolution for Video Super-Resolution
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

Selfplay In MultiPlayer Environments
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Comments
  • Adding Point Cloud Observations to DEDO

    Adding Point Cloud Observations to DEDO

    This PR adds point cloud (pcd) rendering to the DEDO. Summary of changes:

    • Point cloud data extracted from sim environment based on a set of object ids that we want to retain
    • Depth cameras are instantiated using a cameraConfig class, which abstracts out the various camera configurations needed.
    • The cameraConfig class loads camera configs from JSON (for easy loading & sharing of camera configs), or directly by instantiation (if you know how you want to dynamically set your camera).
    • Some sample JSON camera configs are provided (4 total)
    • Unprojecting from depth image to point cloud is vectorized, so rendering point cloud observations adds negligible runtime to overall pipeline process time (should benchmark this?).
    • The original deform_env had to be adjusted so that the deformable object would have ID 0. For some reason, pybullet only renders the deformable if this is true.

    Known issues:

    • The floor has disappeared from the visual.
    opened by edwin-pan 3
  • Enables base motion on fetch robot with 1 anchor

    Enables base motion on fetch robot with 1 anchor

    Changes allow the fetch robot to move towards the hanger with an apron.

    Google Doc that explains the changes: https://docs.google.com/document/d/18_9K29K4N6atvtqUxIqKhq6Bt0YSPhQgfWldUWdyvLM/edit?usp=sharing

    There are some TODO's: related to removing some hardcoded values and improving the results

    opened by Nishantjannu 0
Releases(v0.1)
  • v0.1(Jan 11, 2022)

    This is the initial release of the code and functionality presented at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks in December 2021.

    Source code(tar.gz)
    Source code(zip)
Owner
Rika
Sim-to-real with Reinforcement Learning, Variational Inference, Bayesian Optimization
Rika
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022