Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Overview

Perceiver IO

Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Usage

import torch

from src.perceiver.decoders import PerceiverDecoder
from src.perceiver.encoder import PerceiverEncoder
from src.perceiver import PerceiverIO


num_latents = 128
latent_dim = 256
input_dim = 64

decoder_query_dim = 4


encoder = PerceiverEncoder(
    num_latents=num_latents,
    latent_dim=latent_dim,
    input_dim=input_dim,
    num_self_attn_per_block=8,
    num_blocks=1
)
decoder = PerceiverDecoder(
    latent_dim=latent_dim,
    query_dim=decoder_query_dim
)
perceiver = PerceiverIO(encoder, decoder)

inputs = torch.randn(2, 16, input_dim)
output_query = torch.randn(2, 3, decoder_query_dim)

perceiver(inputs, output_query)  # shape = (2, 3, 4)

List of implemented decoders

  • ProjectionDecoder
  • ClassificationDecoder
  • PerceiverDecoder

Example architectures:

Citation

@misc{jaegle2021perceiver,
    title   = {Perceiver IO: A General Architecture for Structured Inputs & Outputs},
    author  = {Andrew Jaegle and Sebastian Borgeaud and Jean-Baptiste Alayrac and Carl Doersch and Catalin Ionescu and David Ding and Skanda Koppula and Andrew Brock and Evan Shelhamer and Olivier Hénaff and Matthew M. Botvinick and Andrew Zisserman and Oriol Vinyals and João Carreira},
    year    = {2021},
    eprint  = {2107.14795},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
You might also like...
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

A Structured Self-attentive Sentence Embedding
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

Comments
  • Issue related to LayerNorm

    Issue related to LayerNorm

    Hello, man. First of all thank for your effort a lot. I can see that It was taken your time quite much to write a clear code. How ever, I just have a small question about Cross Attention class:

            self.kv_layer_norm = nn.LayerNorm(kv_dim)
            self.q_layer_norm = nn.LayerNorm(q_dim)
            self.qkv_layer_norm = nn.LayerNorm(q_dim)
    

    When I integrated the repository to my program as the last layer . The outputs of these LayerNorm were always 0. When I removed these Norm layers, The code run pretty well but much worse than the simple method (let's say simply concatenate the inputs and queries). p/s: To be more specific, My queries and inputs were taken from 2 separated nets. Do you have any idea about it? Once again, thank you for your great work a lot.

    opened by NathanielNguyen11 7
  • Comparison with perceiver-pytorch?

    Comparison with perceiver-pytorch?

    How does this repository compare with https://github.com/lucidrains/perceiver-pytorch ?

    Would you have any interest in generalizing and integrating the two implementations together?

    opened by xloem 3
  • Bug in MultiHeadAttention

    Bug in MultiHeadAttention

    https://github.com/esceptico/perceiver-io/blob/6b6507334451f61eeb073665b62f00d26f331893/src/perceiver_io/attention.py#L74

    in the referenced line self.scale should be multiplied instead of the divide, since it's defined as self.scale = self.qk_head_dim ** -0.5. The correct expression should be attention = (q @ k.transpose(-2, -1) * self.scale)

    -Nilesh

    opened by nilesh2797 2
Releases(v0.1.4)
Owner
Timur Ganiev
Timur Ganiev
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022