Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

Related tags

Deep LearningDsig
Overview

DSIG

Deep Structured Instance Graph for Distilling Object Detectors

Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia.

[pdf] [slide] [supp] [bibtex]

This repo provides the implementation of paper "Deep Structured Instance Graph for Distilling Object Detectors"(Dsig) based on detectron2. Specifically, aiming at solving the feature imbalance problem while further excavating the missing relation inside semantic instances, we design a graph whose nodes correspond to instance proposal-level features and edges represent the relation between nodes. We achieve new state-of-the-art results on the COCO object detection task with diverse student-teacher pairs on both one- and two-stage detectors.

Installation

Requirements

  • Python >= 3.6
  • Pytorch >= 1.7.0
  • Torchvision >= 0.8.1
  • Pycocotools 2.0.2

Follow the install instructions in detectron2, note that in this repo we use detectron2 commit version ff638c931d5999f29c22c1d46a3023e67a5ae6a1. Download COCO dataset and export DETECTRON2_DATASETS=$COCOPATH to direct to COCO dataset. We prepare our pre-trained weights for training in Student-Teacher format, please follow the instructions in Pretrained.

Running

We prepare training configs following the detectron2 format. For training a Faster R-CNN R18-FPN student with a Faster R-CNN R50-FPN teacher on 4 GPUs:

./start_train.sh train projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

For testing:

./start_train.sh eval projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

For debugging:

./start_train.sh debugtrain projects/Distillation/configs/Distillation-FasterRCNN-R18-R50-dsig-1x.yaml

Results and Models

Faster R-CNN:

Experiment(Student-Teacher) Schedule AP Config Model
R18-R50 1x 37.25 config googledrive
R50-R101 1x 40.57 config googledrive
R101-R152 1x 41.65 config googledrive
MNV2-R50 1x 34.44 config googledrive
EB0-R101 1x 37.74 config googledrive

RetinaNet:

Experiment(Student-Teacher) Schedule AP Config Model
R18-R50 1x 34.72 config googledrive
MNV2-R50 1x 32.16 config googledrive
EB0-R101 1x 34.44 config googledrive

More models and results will be released soon.

Citation

@inproceedings{chen2021dsig,
    title={Deep Structured Instance Graph for Distilling Object Detectors},
    author={Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, and Jiaya Jia},
    booktitle={IEEE International Conference on Computer Vision (ICCV)},
    year={2021},
}

Contact

Please contact [email protected].

Owner
DV Lab
Deep Vision Lab
DV Lab
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022