Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

Overview

🔉 Sound-guided Semantic Image Manipulation (CVPR2022)

Official Pytorch Implementation

Teaser image

Sound-guided Semantic Image Manipulation
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022

Paper : https://arxiv.org/abs/2112.00007
Project Page: https://kuai-lab.github.io/cvpr2022sound/
Seung Hyun Lee, Wonseok Roh, Wonmin Byeon, Sang Ho Yoon, Chanyoung Kim, Jinkyu Kim*, and Sangpil Kim*

Abstract: The recent success of the generative model shows that leveraging the multi-modal embedding space can manipulate an image using text information. However, manipulating an image with other sources rather than text, such as sound, is not easy due to the dynamic characteristics of the sources. Especially, sound can convey vivid emotions and dynamic expressions of the real world. Here, we propose a framework that directly encodes sound into the multi-modal~(image-text) embedding space and manipulates an image from the space. Our audio encoder is trained to produce a latent representation from an audio input, which is forced to be aligned with image and text representations in the multi-modal embedding space. We use a direct latent optimization method based on aligned embeddings for sound-guided image manipulation. We also show that our method can mix different modalities, i.e., text and audio, which enrich the variety of the image modification. The experiments on zero-shot audio classification and semantic-level image classification show that our proposed model outperforms other text and sound-guided state-of-the-art methods.

💾 Installation

For all the methods described in the paper, is it required to have:

Specific requirements for each method are described in its section. To install CLIP please run the following commands:

conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=<CUDA_VERSION>
pip install ftfy regex tqdm gdown
pip install git+https://github.com/openai/CLIP.git

🔨 Method

Method image

1. CLIP-based Contrastive Latent Representation Learning.

Dataset Curation.

We create an audio-text pair dataset with the vggsound dataset. We also used the audioset dataset as the script below.

  1. Please download vggsound.csv from the link.
  2. Execute download.py to download the audio file of the vggsound dataset.
  3. Execute curate.py to preprocess the audio file (wav to mel-spectrogram).
cd soundclip
python3 download.py
python3 curate.py

Training.

python3 train.py

2. Sound-Guided Image Manipulation.

Direct Latent Code Optimization.

The code relies on the StyleCLIP pytorch implementation.

python3 optimization/run_optimization.py --lambda_similarity 0.002 --lambda_identity 0.0 --truncation 0.7 --lr 0.1 --audio_path "./audiosample/explosion.wav" --ckpt ./pretrained_models/landscape.pt --stylegan_size 256

Results

Zero-shot Audio Classification Accuracy.

Model Supervised Setting Zero-Shot ESC-50 UrbanSound 8K
ResNet50 - 66.8% 71.3%
Ours (Without Self-Supervised) - - 58.7% 63.3%
Ours (Logistic Regression) - - 72.2% 66.8%
Wav2clip - 41.4% 40.4%
AudioCLIP - 69.4% 68.8%
Ours (Without Self-Supervised) - 49.4% 45.6%
Ours - 57.8% 45.7%

Manipulation Results.

LSUN. LSUN image

FFHQ. FFHQ image

To see more diverse examples, please visit our project page!

Citation

@article{lee2021sound,
    title={Sound-Guided Semantic Image Manipulation},
    author={Lee, Seung Hyun and Roh, Wonseok and Byeon, Wonmin and Yoon, Sang Ho and Kim, Chan Young and Kim, Jinkyu and Kim, Sangpil},
    journal={arXiv preprint arXiv:2112.00007},
    year={2021}
}
Owner
CVLAB
CVLAB in Department of artificial intelligence, Korea University
CVLAB
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022