Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Overview

Part Detector Discovery

This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler published at ACCV 2014. If you would like to refer to this work, please cite the corresponding paper

@inproceedings{Simon14:PDD,
  author = {Marcel Simon and Erik Rodner and Joachim Denzler},
  booktitle = {Asian Conference on Computer Vision (ACCV)},
  title = {Part Detector Discovery in Deep Convolutional Neural Networks},
  year = {2014},
}

The following steps will guide you through the usage of the code.

1. Python Environment

Setup a python environment, preferably a virtual environment using e. g. virtual_env. The requirements file might install more than you need.

virtualenv pyhton-env && pip install -r requirements.txt

2. DeCAF Installation

Build and install decaf into this environment

source python-env/bin/activate
cd decaf-tools/decaf/
python setup.py build
python setup.py install

3. Pre-Trained ImageNet Model

Get the decaf ImageNet model:

cd decaf-tools/models/
bash get_model.sh

You now might need to adjust the path to the decaf model in decaf-tools/extract_grad_map.py, line 75!

4. Gradient Map Calculation

Now you can calculate the gradient maps using the following command. For a single image, use decaf-tools/extract_grad_map.py :

usage: extract_grad_map.py [-h] [--layers LAYERS [LAYERS ...]] [--limit LIMIT]
                           [--channel_limit CHANNEL_LIMIT]
                           [--images pattern [pattern ...]] [--outdir OUTDIR]

Calculate the gradient maps for an image.

optional arguments:
  -h, --help            show this help message and exit
  --layers LAYERS [LAYERS ...]
  --limit LIMIT         When calculating the gradient of the class scores,
                        calculate the gradient for the output elements with the
                        [limit] highest probabilities.
  --channel_limit CHANNEL_LIMIT
                        Sets the number of channels per layer you want to
                        calculate the gradient of.
  --images pattern [pattern ...]
			Absolute image path to the image. You can use wildcards.
  --outdir OUTDIR

For a list of absolute image paths call this script this way:

python extract_grad_map.py --images $(cat /path/to/imagelist.txt) --limit 1 --channel_limit 256 --layers probs pool5 --outdir /path/to/output/

The gradient maps are stored as Matlab .mat file and as png. In addition to these, the script also generates A html file to view the gradient maps and the input image. The gradient map is placed in the directory outdir/images'_parent_dir/image_filename/*. Be aware that approx. 45 MiB of storage is required per input image. For the whole CUB200-2011 dataset this means a total storage size of approx 800 GiB!

5. Part Localization

Apply the part localization using GMM fitting or maximum finding. Have a look in the part_localization folder for that. Open calcCUBPartLocs.m and adjust the paths. Now simply run calcCUBPartLocs(). This will create a file which has the same format as the part_locs.txt file of the CUB200-2011 dataset. You can use it for part-based classification.

6. Classification

We also provide the classification framework to use these part localizations and feature extraction with DeCAF. Go to the folder classification and open partEstimationDeepLearing.m. Have a look at line 40 and adjust the path such that it points to the correct file. Open settings.m and adjust the paths. Next, open settings.m and adjust the paths to liblinear and the virtual python environment. Now you can execute for example:

init
recRate = experimentParts('cub200_2011',200, struct('descriptor','plain','preprocessing_useMask','none','preprocessing_cropToBoundingbox',0), struct('partSelection',[1 2 3 9 14],'bothSymmetricParts',0,'descriptor','plain','trainPartLocation','est','preprocessing_relativePartSize',1.0/8,'preprocessing_cropToBoundingbox',0))

This will evaluate the classification performance on the standard train-test-split using the estimated part locations. Experiment parts has four parameters. The first one tell the function which dataset to use. You want to keep 'cub200_2011' here.

The second one is the number of classes to use, 3, 14 and 200 is supported here. Next is the setup for the global feature extraction. The only important setting is preprocessing_cropToBoundingbox. A value of 0 will tell the function not to use the ground truth bounding box during testing. You should leave the other two options as shown here.

The last one is the setup for the part features. You can select here, which parts you want to use and if you want to extract features from both symmetric parts, if both are visible. Since the part detector discovery associates some parts with the same channel, the location prediction will be the same for these. In this case, only select the parts which have unique channels here. In the example, the part 1, 2, 3, 9 and 14 are associated with different channels.

'trainPartLocation' tells the function, if grount-truth ('gt') or estimated ('est') part locations should be used for training. Since the discovered part detectors do not necessarily relate to semantic parts, 'est' usually is the better option here.

'preprocessing_relativePartSize' adjusts the size of patches, that are extracted at the estimated part locations. Please have a look at the paper for more information.

For the remaining options, you should keep everything as it is.

Acknowledgements

The classification framework is an extension of the excellent fine-grained recognition framework by Christoph Göring, Erik Rodner, Alexander Freytag and Joachim Denzler. You can find their project at https://github.com/cvjena/finegrained-cvpr2014.

Our work is based on DeCAF, a framework for convolutional neural networks. You can find the repository of the corresponding project at https://github.com/UCB-ICSI-Vision-Group/decaf-release/ .

License

Part Detector Discovery Framework by Marcel Simon, Erik Rodner and Joachim Denzler is licensed under the non-commercial license Creative Commons Attribution 4.0 International License. For usage beyond the scope of this license, please contact Marcel Simon.

You might also like...
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

Data and Code for ACL 2021 Paper
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Open source code for Paper
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

Releases(v1.0)
Owner
Computer Vision Group Jena
Computer Vision Group Jena
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022