Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Overview

Part Detector Discovery

This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler published at ACCV 2014. If you would like to refer to this work, please cite the corresponding paper

@inproceedings{Simon14:PDD,
  author = {Marcel Simon and Erik Rodner and Joachim Denzler},
  booktitle = {Asian Conference on Computer Vision (ACCV)},
  title = {Part Detector Discovery in Deep Convolutional Neural Networks},
  year = {2014},
}

The following steps will guide you through the usage of the code.

1. Python Environment

Setup a python environment, preferably a virtual environment using e. g. virtual_env. The requirements file might install more than you need.

virtualenv pyhton-env && pip install -r requirements.txt

2. DeCAF Installation

Build and install decaf into this environment

source python-env/bin/activate
cd decaf-tools/decaf/
python setup.py build
python setup.py install

3. Pre-Trained ImageNet Model

Get the decaf ImageNet model:

cd decaf-tools/models/
bash get_model.sh

You now might need to adjust the path to the decaf model in decaf-tools/extract_grad_map.py, line 75!

4. Gradient Map Calculation

Now you can calculate the gradient maps using the following command. For a single image, use decaf-tools/extract_grad_map.py :

usage: extract_grad_map.py [-h] [--layers LAYERS [LAYERS ...]] [--limit LIMIT]
                           [--channel_limit CHANNEL_LIMIT]
                           [--images pattern [pattern ...]] [--outdir OUTDIR]

Calculate the gradient maps for an image.

optional arguments:
  -h, --help            show this help message and exit
  --layers LAYERS [LAYERS ...]
  --limit LIMIT         When calculating the gradient of the class scores,
                        calculate the gradient for the output elements with the
                        [limit] highest probabilities.
  --channel_limit CHANNEL_LIMIT
                        Sets the number of channels per layer you want to
                        calculate the gradient of.
  --images pattern [pattern ...]
			Absolute image path to the image. You can use wildcards.
  --outdir OUTDIR

For a list of absolute image paths call this script this way:

python extract_grad_map.py --images $(cat /path/to/imagelist.txt) --limit 1 --channel_limit 256 --layers probs pool5 --outdir /path/to/output/

The gradient maps are stored as Matlab .mat file and as png. In addition to these, the script also generates A html file to view the gradient maps and the input image. The gradient map is placed in the directory outdir/images'_parent_dir/image_filename/*. Be aware that approx. 45 MiB of storage is required per input image. For the whole CUB200-2011 dataset this means a total storage size of approx 800 GiB!

5. Part Localization

Apply the part localization using GMM fitting or maximum finding. Have a look in the part_localization folder for that. Open calcCUBPartLocs.m and adjust the paths. Now simply run calcCUBPartLocs(). This will create a file which has the same format as the part_locs.txt file of the CUB200-2011 dataset. You can use it for part-based classification.

6. Classification

We also provide the classification framework to use these part localizations and feature extraction with DeCAF. Go to the folder classification and open partEstimationDeepLearing.m. Have a look at line 40 and adjust the path such that it points to the correct file. Open settings.m and adjust the paths. Next, open settings.m and adjust the paths to liblinear and the virtual python environment. Now you can execute for example:

init
recRate = experimentParts('cub200_2011',200, struct('descriptor','plain','preprocessing_useMask','none','preprocessing_cropToBoundingbox',0), struct('partSelection',[1 2 3 9 14],'bothSymmetricParts',0,'descriptor','plain','trainPartLocation','est','preprocessing_relativePartSize',1.0/8,'preprocessing_cropToBoundingbox',0))

This will evaluate the classification performance on the standard train-test-split using the estimated part locations. Experiment parts has four parameters. The first one tell the function which dataset to use. You want to keep 'cub200_2011' here.

The second one is the number of classes to use, 3, 14 and 200 is supported here. Next is the setup for the global feature extraction. The only important setting is preprocessing_cropToBoundingbox. A value of 0 will tell the function not to use the ground truth bounding box during testing. You should leave the other two options as shown here.

The last one is the setup for the part features. You can select here, which parts you want to use and if you want to extract features from both symmetric parts, if both are visible. Since the part detector discovery associates some parts with the same channel, the location prediction will be the same for these. In this case, only select the parts which have unique channels here. In the example, the part 1, 2, 3, 9 and 14 are associated with different channels.

'trainPartLocation' tells the function, if grount-truth ('gt') or estimated ('est') part locations should be used for training. Since the discovered part detectors do not necessarily relate to semantic parts, 'est' usually is the better option here.

'preprocessing_relativePartSize' adjusts the size of patches, that are extracted at the estimated part locations. Please have a look at the paper for more information.

For the remaining options, you should keep everything as it is.

Acknowledgements

The classification framework is an extension of the excellent fine-grained recognition framework by Christoph Göring, Erik Rodner, Alexander Freytag and Joachim Denzler. You can find their project at https://github.com/cvjena/finegrained-cvpr2014.

Our work is based on DeCAF, a framework for convolutional neural networks. You can find the repository of the corresponding project at https://github.com/UCB-ICSI-Vision-Group/decaf-release/ .

License

Part Detector Discovery Framework by Marcel Simon, Erik Rodner and Joachim Denzler is licensed under the non-commercial license Creative Commons Attribution 4.0 International License. For usage beyond the scope of this license, please contact Marcel Simon.

You might also like...
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

Data and Code for ACL 2021 Paper
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Open source code for Paper
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

Releases(v1.0)
Owner
Computer Vision Group Jena
Computer Vision Group Jena
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022