Tensorflow implementation of soft-attention mechanism for video caption generation.

Overview

SA-tensorflow

Tensorflow implementation of soft-attention mechanism for video caption generation.

An example of soft-attention mechanism. The attention weight alpha indicates the temporal attention in one video based on each word.

[Yao et al. 2015 Describing Videos by Exploiting Temporal Structure] The original code implemented in Torch can be found here.

Prerequisites

  • Python 2.7
  • Tensorflow >= 0.7.1
  • NumPy
  • pandas
  • keras
  • java 1.8.0

Data

The MSVD [2] dataset can be download from here.

We pack the data into the format of HDF5, where each file is a mini-batch for training and has the following keys:

[u'data', u'fname', u'label', u'title']

batch['data'] stores the visual features. shape (n_step_lstm, batch_size, hidden_dim)

batch['fname'] stores the filenames(no extension) of videos. shape (batch_size)

batch['title'] stores the description. If there are multiple sentences correspond to one video, the other metadata such as visual features, filenames and labels have to duplicate for one-to-one mapping. shape (batch_size)

batch['label'] indicates where the video ends. For instance, [-1., -1., -1., -1., 0., -1., -1.] means that the video ends at index 4.

shape (n_step_lstm, batch_size)

Generate HDF5 data

We generate the HDF5 data by following the steps below. The codes are a little messy. If you have any questions, feel free to ask.

1. Generate Label

Once you change the video_path and output_path, you can generate labels by running the script:

python hdf5_generator/generate_nolabel.py

I set the length of each clip to 10 frames and the maximum length of frames to 450. You can change the parameters in function get_frame_list(frame_num).

2. Pack features together (no caption information)

Inputs:

label_path: The path for the labels generated earlier.

feature_path: The path that stores features such as VGG and C3D. You can change the directory name whatever you want.

Ouputs:

h5py_path: The path that you store the concatenation of different features, the code will automatically put the features in the subdirectory cont

python hdf5_generator/input_generator.py

Note that in function get_feats_depend_on_label(), you can choose whether to take the mean feature or random sample feature of frames in one clip. The random sample script is commented out since the performance is worse.

3. Add captions into HDF5 data

I set the maxmimum number of words in a caption to 35. feature folder is where our final output features store.

python hdf5_generator/trans_video_youtube.py

(The codes here are written by Kuo-Hao)

Generate data list

video_data_path_train = '$ROOTPATH/SA-tensorflow/examples/train_vn.txt'

You can change the path variable to the absolute path of your data. Then simply run python getlist.py to generate the list.

P.S. The filenames of HDF5 data start with train, val, test.

Usage

training

$ python Att.py --task train

testing

Test the model after a certain number of training epochs.

$ python Att.py --task test --net models/model-20

Author

Tseng-Hung Chen

Kuo-Hao Zeng

Disclaimer

We modified the code from this repository jazzsaxmafia/video_to_sequence to the temporal-attention model.

References

[1] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville. Describing videos by exploiting temporal structure. arXiv:1502.08029v4, 2015.

[2] chen:acl11, title = "Collecting Highly Parallel Data for Paraphrase Evaluation", author = "David L. Chen and William B. Dolan", booktitle = "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL-2011)", address = "Portland, OR", month = "June", year = 2011

[3] Microsoft COCO Caption Evaluation

Owner
Paul Chen
Paul Chen
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022