MERLOT: Multimodal Neural Script Knowledge Models

Related tags

Deep Learningmerlot
Overview

merlot

MERLOT: Multimodal Neural Script Knowledge Models

MERLOT is a model for learning what we are calling "neural script knowledge" -- representations about what is going on in videos, spanning multiple video frames with associated captions.

Visit our project page at rowanzellers.com/merlot, or read the full paper to learn more.

teaser

What's here

We are releasing the following:

  • Code for the MERLOT model (in model/, with data processing in data/
  • Code for running MERLOT over visual story ordering.

We plan to release:

  • Information about the videos used in this work
  • Code for adapting the model to other tasks (not strictly needed, but just to make things easier)

This is somewhat ongoing -- we hope to make it somewhat easier to adapt MERLOT to other tasks, please follow if interested!

Enviroment and setup

There are two different ways of running MERLOT right now

  • Pretraining on videos This requires a TPU pod.
  • Finetuning on downstream tasks We did this on TPU v3-8 machines. You can in theory do this on GPUs, however, this isn't tested or officially supported right now.
  • Zero-shot visual-story ordering I have code for this on a TPU, but you should be able to do this on a GPU too.
conda create --name merlot python=3.7 && conda activate merlot
conda install -y python=3.7 tqdm numpy pyyaml scipy ipython cython typing h5py pandas

# If running on GPU
pip install tensorflow-gpu==1.15.5
# If running on TPU
pip install tensorflow==1.15.5

pip install --upgrade google-api-python-client oauth2client boto3 cloud-tpu-profiler regex opencv-python-headless Pillow seaborn
pip install numpy==1.17.0

Pretraining from scratch

This requires a large TPU pod for data-parallelism.

  • First, you'll need to get a bunch of training data in "tfrecord" format -- see data processing in data/ for that. You'll then need to adjust the configuration of model/configs/merlot.yaml accordingly. You'll also need to add in your output path (where you want your newly pretrained model to be saved).
  • Next, in the model directory, run python train.py configs/merlot.yaml

Finetuning on downstream tasks

  • We used the configuration model/merlot.yaml and the checkpoint at gs://merlot/checkpoint_4segments/ for downstream task finetuning. This is slightly different than the checkpoint we used for story unshuffling (that we had to adapt to account for the 5 frame-caption segments for that task), but both should work.
  • Actual finetuning code TBD -- you just create a MerlotModel model/modeling.py, set up your finetuning task (usually involving an additional output layer), and finetune.

Bibtex

@article{zellersluhessel2021merlot,
    title={MERLOT: Multimodal Neural Script Knowledge Models},
    author={Zellers, Rowan and Lu, Ximing and Hessel, Jack and Yu, Youngjae and Park, Jae Sung and Cao, Jize and Farhadi, Ali and Choi, Yejin},
    journal={arXiv preprint arXiv:2106.02636},
    year={2021}
}
Owner
Rowan Zellers
Rowan Zellers
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022